精英家教網 > 初中數學 > 題目詳情
如圖,己知⊙Ol與⊙O2外切于點P,A在⊙Ol上,AC切⊙O2于點C,交⊙O1于點B,AP的延長線交⊙O2于點D.
(1)求證:PC平分∠BPD;
(2)求證:PC2=PB•PD;
(3)當⊙O1、⊙O2的半徑分別為2cm、3cm時,sin∠BAP的值是多少?當⊙O1、⊙O2的半徑分別為4cm、6精英家教網cm時,sin∠BAP的值是多少?分析sin∠BAP值的變化,你能發(fā)現什么規(guī)律?請嘗試證明或否定你的猜想.
分析:(1)由∠ABP=∠AC⊙O2=90°?PB∥O2C?∠BPC=∠PC⊙O2,O2C=O2P?∠O2PC=∠O2CP,∠O2PC=BPC,
(2)求出△PBC∽△PCD即可得.
(3)由圖可知sin∠BAP=
CO2
AP+PO2
,則當⊙O1、⊙O2的半徑分別為2cm、3cm時,當⊙O1、⊙O2的半徑分別為4cm、6cm時,sin∠BAP的值均可求.由此易得sin∠BAP=
CO2
AO2
=
R
2r+R
解答:精英家教網(1)證明:連接CO2、CD,
∵AC是⊙O2的切線,AP是圓O1的直徑,
∴∠ABP=∠AC⊙O2=90°,∴PB∥O2C.
∴∠BPC=∠PCO2,
∵O2C=O2P,∴∠O2PC=∠O2CP,
∴∠O2PC=BPC,即PC平分∠BPD.

(2)證明:∵PC平分∠BPD,∠PBC=∠PCD,
∴△PBC∽△PCD.
PB
PC
=
PC
PD

∴PC2=PB•PD.

(3)解:當⊙O1與⊙O2的半徑分別為2cm、3cm時,sin∠BAP=
3
7

當⊙Ol與⊙O2的半徑分別為4cm、6cm時,sin∠BAP=
3
7

當⊙Ol與⊙O2的半徑之比為定值時,sin∠BAP的值唯一確定,
顯然
R
r
的值唯一確定sin∠BAP的值.
sin∠BAP=
CO2
AO2
=
R
2r+R
點評:本題利用了切線的性質,直徑對的圓周角是直徑,平行線的判定和性質,等邊對等角,正弦的概念求解.
練習冊系列答案
相關習題

科目:初中數學 來源:第24章《圓(下)》中考題集(33):24.3 圓和圓的位置關系(解析版) 題型:解答題

如圖,己知⊙Ol與⊙O2外切于點P,A在⊙Ol上,AC切⊙O2于點C,交⊙O1于點B,AP的延長線交⊙O2于點D.
(1)求證:PC平分∠BPD;
(2)求證:PC2=PB•PD;
(3)當⊙O1、⊙O2的半徑分別為2cm、3cm時,sin∠BAP的值是多少?當⊙O1、⊙O2的半徑分別為4cm、6cm時,sin∠BAP的值是多少?分析sin∠BAP值的變化,你能發(fā)現什么規(guī)律?請嘗試證明或否定你的猜想.

查看答案和解析>>

科目:初中數學 來源:第7章《銳角三角函數》中考題集(06):7.2 正弦、余弦(解析版) 題型:解答題

如圖,己知⊙Ol與⊙O2外切于點P,A在⊙Ol上,AC切⊙O2于點C,交⊙O1于點B,AP的延長線交⊙O2于點D.
(1)求證:PC平分∠BPD;
(2)求證:PC2=PB•PD;
(3)當⊙O1、⊙O2的半徑分別為2cm、3cm時,sin∠BAP的值是多少?當⊙O1、⊙O2的半徑分別為4cm、6cm時,sin∠BAP的值是多少?分析sin∠BAP值的變化,你能發(fā)現什么規(guī)律?請嘗試證明或否定你的猜想.

查看答案和解析>>

科目:初中數學 來源:第28章《圓》中考題集(50):28.2 與圓有關的位置關系(解析版) 題型:解答題

如圖,己知⊙Ol與⊙O2外切于點P,A在⊙Ol上,AC切⊙O2于點C,交⊙O1于點B,AP的延長線交⊙O2于點D.
(1)求證:PC平分∠BPD;
(2)求證:PC2=PB•PD;
(3)當⊙O1、⊙O2的半徑分別為2cm、3cm時,sin∠BAP的值是多少?當⊙O1、⊙O2的半徑分別為4cm、6cm時,sin∠BAP的值是多少?分析sin∠BAP值的變化,你能發(fā)現什么規(guī)律?請嘗試證明或否定你的猜想.

查看答案和解析>>

科目:初中數學 來源:第28章《銳角三角函數》中考題集(12):28.1 銳角三角函數(解析版) 題型:解答題

如圖,己知⊙Ol與⊙O2外切于點P,A在⊙Ol上,AC切⊙O2于點C,交⊙O1于點B,AP的延長線交⊙O2于點D.
(1)求證:PC平分∠BPD;
(2)求證:PC2=PB•PD;
(3)當⊙O1、⊙O2的半徑分別為2cm、3cm時,sin∠BAP的值是多少?當⊙O1、⊙O2的半徑分別為4cm、6cm時,sin∠BAP的值是多少?分析sin∠BAP值的變化,你能發(fā)現什么規(guī)律?請嘗試證明或否定你的猜想.

查看答案和解析>>

同步練習冊答案