【題目】在平面直角坐標(biāo)系中,橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn).如圖,從內(nèi)向外依次為第,,,,個(gè)正方形(實(shí)線),若整點(diǎn)在第個(gè)正方形的邊上,則,,之間滿足的數(shù)量關(guān)系為_______.
【答案】
【解析】
解這道題時(shí),先分別探究第1個(gè)正方形上的4個(gè)整點(diǎn)的坐標(biāo),第2個(gè)正方形上的8個(gè)整點(diǎn)的坐標(biāo),第3個(gè)正方形上的12個(gè)整點(diǎn)的坐標(biāo)彼此之間的關(guān)系,進(jìn)而可總結(jié)得到n與a和b之間的規(guī)律,問(wèn)題自然解決.
解:由圖可知,第1個(gè)正方形四條邊上的格點(diǎn)共有4個(gè),
它們的坐標(biāo)分別為:(1,0),(0,1),(﹣1,0),(0,﹣1),
且這4個(gè)點(diǎn)的橫縱坐標(biāo)的絕對(duì)值之和為1;
第2個(gè)正方形四條邊上的格點(diǎn)共有8個(gè),
它們的坐標(biāo)分別為:(2,0),(1,1),(0,2),(﹣1,1),(﹣2,0),(﹣1,﹣1),(0,﹣2),(1,﹣1),
且這8個(gè)點(diǎn)的橫縱坐標(biāo)的絕對(duì)值之和為2;
第3個(gè)正方形四條邊上的格點(diǎn)共有12個(gè),
它們的坐標(biāo)分別為:(3,0),(2,1),(1,2),(0,3),(﹣1,2),(﹣2,1),(﹣3,0),(﹣2,﹣1),(﹣1,﹣2),(0,﹣3),(1,﹣2),(2,﹣1),
且這12個(gè)點(diǎn)的橫縱坐標(biāo)的絕對(duì)值之和為3;
由此可知:若整點(diǎn)在第個(gè)正方形的邊上,則,,之間滿足的數(shù)量關(guān)系為,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC,BD為圓O的兩條互相垂直的直徑,動(dòng)點(diǎn)P從圓心O出發(fā),沿O→C→D→O的路線作勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,∠APB的度數(shù)為y度,那么表示y與t之間函數(shù)關(guān)系的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:
①分別以A、C為圓心,以大于AC的長(zhǎng)為半徑在AC兩邊作弧,交于兩點(diǎn)M、N;
②連接MN,分別交AB、AC于點(diǎn)D、O;
③過(guò)C作CE∥AB交MN于點(diǎn)E,連接AE、CD.
則四邊形ADCE的周長(zhǎng)為( 。
A. 10 B. 20 C. 12 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=-x2+bx+c與一直線相交于A(-1,0),C(2,3)兩點(diǎn),與y軸交于點(diǎn)N.其頂點(diǎn)為D.
(1)拋物線及直線AC的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)M(3,m),求使MN+MD的值最小時(shí)m的值;
(3)若拋物線的對(duì)稱軸與直線AC相交于點(diǎn)B,E為直線AC上的任意一點(diǎn),過(guò)點(diǎn)E作EF∥BD交拋物線于點(diǎn)F,以B,D,E,F(xiàn)為頂點(diǎn)的四邊形能否為平行四邊形?若能,求點(diǎn)E的坐標(biāo);若不能,請(qǐng)說(shuō)明理由;
(4)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,過(guò)點(diǎn)O作一條直線分別交AB,CD于點(diǎn)E,F(xiàn).
(1)求證:OE=OF;
(2)若AB=6,BC=5,OE=2,求四邊形BCFE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①為北斗七星的位置圖,圖②將北斗七星分別標(biāo)為A,B,C,D,E,F,G,將A,B,C,D,E,F順次首尾連接,若AF恰好經(jīng)過(guò)點(diǎn)G,且AF∥DE,∠B=∠C+10°,∠D=∠E=105°.
(1)求∠F的度數(shù);
(2)計(jì)算∠B-∠CGF的度數(shù)是______;(直接寫出結(jié)果)
(3)連接AD,∠ADE與∠CGF滿足怎樣數(shù)量關(guān)系時(shí),BC∥AD,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的不等式>x﹣1.
(1)當(dāng)m=1時(shí),求該不等式的解集;
(2)m取何值時(shí),該不等式有解,并求出解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加強(qiáng)愛(ài)國(guó)主義教育,提高思想道德素質(zhì),某中學(xué)決定組織部分班級(jí)去山西國(guó)民師范舊址革命活動(dòng)紀(jì)念館開展紅色旅游活動(dòng),在參加此次活動(dòng)的師生中,若每位教師帶17名學(xué)生,還剩12名學(xué)生沒(méi)人帶;若每位教師帶18名學(xué)生,就有一位教師少帶4名學(xué)生.現(xiàn)有甲、乙兩種大客車,兩種客車的載客量和租金如下表所示.
類別 | 甲種客車 | 乙種客車 |
載客量(人/輛) | 30 | 42 |
租金(元/輛) | 300 | 420 |
(1)參加此次紅色旅游活動(dòng)的教師和學(xué)生各有多少人?
(2)為了安全,每輛客車上要有2名教師.則怎樣租車可以保證師生均有車坐,而且每輛車上都沒(méi)有空座,也不超載,此時(shí)租車的費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是直線AC上一點(diǎn),OB是一條射線,OD平分∠AOB,OE在∠BOC內(nèi)部,∠BOE=∠EOC,∠DOE=70°,求∠EOC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com