【題目】如圖,矩形OABC中,A60)、C0,2)、D0,3),射線l過(guò)點(diǎn)D且與x軸平行,點(diǎn)PQ分別是lx軸正半軸上動(dòng)點(diǎn),滿足PQO=60°

1點(diǎn)B的坐標(biāo)是   ;②∠CAO=   度;當(dāng)點(diǎn)Q與點(diǎn)A重合 時(shí),點(diǎn)P的坐標(biāo)為   ;(直接寫(xiě)出答案)

2)設(shè)OA的中點(diǎn)為N,PQ與線段AC相交于點(diǎn)M,是否存在點(diǎn)P,使AMN為等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的橫坐標(biāo)為m;若不存在,請(qǐng)說(shuō)明理由.

3)設(shè)點(diǎn)P的橫坐標(biāo)為x,OPQ與矩形OABC的重疊部分的面積為S,試求Sx的函數(shù)關(guān)系式和相應(yīng)的自變量x的取值范圍.

【答案】16,2),30,3,3);(2)m=0m=3m=2;(3當(dāng)0≤x≤3時(shí),S梯形=3+x);當(dāng)3x≤5時(shí),S=3+xx32;當(dāng)5x≤9時(shí),S=12x);當(dāng)9x時(shí),S=

【解析】矩形的性質(zhì),梯形的性質(zhì),銳角三角函數(shù),特殊角的三角函數(shù)值,相似三角形的判定和性質(zhì),解直角三角形。

1由四邊形OABC是矩形,根據(jù)矩形的性質(zhì),即可求得點(diǎn)B的坐標(biāo):

四邊形OABC是矩形,∴AB=OCOA=BC,

A60)、C02),點(diǎn)B的坐標(biāo)為:(6,2)。

由正切函數(shù),即可求得∠CAO的度數(shù):

,∴∠CAO=30°

由三角函數(shù)的性質(zhì),即可求得點(diǎn)P的坐標(biāo);如圖:當(dāng)點(diǎn)Q與點(diǎn)A重合時(shí),過(guò)點(diǎn)PPE⊥OAE,

∵∠PQO=60°D0,3),PE=3。

OE=OA﹣AE=6﹣3=3,點(diǎn)P的坐標(biāo)為(3,3)。

2)分別從MN=AN,AM=ANAM=MN去分析求解即可求得答案:

情況

MN=AN=3,則∠AMN=∠MAN=30°,

∴∠MNO=60°

∵∠PQO=60°,即∠MQO=60°,點(diǎn)NQ重合。

點(diǎn)PD重合。此時(shí)m=0。

情況,如圖AM=AN,作MJ⊥x軸、PI⊥x軸。

MJ=MQsin60°=AQsin600

,解得:m=3﹣

情況③AM=NM,此時(shí)M的橫坐標(biāo)是4.5,

過(guò)點(diǎn)PPK⊥OAK,過(guò)點(diǎn)MMG⊥OAG,

∴MG=。

。

∴KG=3﹣0.5=2.5AG=AN=1.5。∴OK=2∴m=2。

綜上所述,點(diǎn)P的橫坐標(biāo)為m=0m=3﹣m=2。

3)分別從當(dāng)0≤x≤3時(shí),當(dāng)3x≤5時(shí),當(dāng)5x≤9時(shí),當(dāng)x9時(shí)去分析求解即可求得答案。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在括號(hào)內(nèi)填寫(xiě)理由.

如圖,已知∠B+∠BCD180°,∠B=∠D.

求證:∠E=∠DFE.

證明:∵∠B+∠BCD180°(已知)

ABCD(______________________).

∴∠B_______(_____________________).

又∵∠B=∠D(已知),

∴∠DCE=∠D(_____________________).

ADBE(_____________________).

∴∠E=∠DFE(_____________________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市政府2007年準(zhǔn)備投入一定資金加大對(duì)主城區(qū)的改造力度,但又不影響對(duì)教育及其他方面的投入.下面是市規(guī)劃局等部門提供的信息:

2002

2003

2004

2005

政府劃撥資金

1.2

1.4

1.5

1.6

招商引進(jìn)資金

5.8

6.1

6.25

6.4

2007年用于主城區(qū)改造的資金不超過(guò)2007年教育投入的3倍.

②計(jì)劃2007年比2006年的教育投入多0.5億元,這樣兩年的教育投入之比為65

③用于主城區(qū)改造的資金一部分由政府劃撥,其余來(lái)源于招商引資.據(jù)分析發(fā)現(xiàn),招商所引資金與政府劃撥的資金始終滿足某種函數(shù)關(guān)系.(如下表所示)

政府劃撥資金與招商引進(jìn)資金對(duì)照表:(單位:億元)

2007年招商引資的投資者從2008年起每年共可獲得0.67億元的回報(bào),估計(jì)2007年招商引進(jìn)的資金至少10年方可收回.

1)該市政府2006年對(duì)教育的投入為多少億元?

2)求招商引進(jìn)資金y(單位:億元)與財(cái)政劃撥部分x(單位:億元)之間的函數(shù)關(guān)系式;

3)求2007年該市在主城區(qū)改造中財(cái)政劃撥的資金的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某天在南印度洋海域有兩艘自西向東航行的搜救船AB,B船在A船的正東方向,且兩船保持40海里的距離某一時(shí)刻兩船同時(shí)測(cè)得在A的東北方向,B的北偏東15°方向有一疑似物C求此時(shí)疑似物C與搜救船A、B的距離各是多少?(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)國(guó)家節(jié)能減排的號(hào)召,鼓勵(lì)居民節(jié)約用電,各省市先后出臺(tái)了階梯價(jià)格制度,如表中是某市的電價(jià)標(biāo)準(zhǔn)(每月)

階梯

電量x(單位:度)

電費(fèi)價(jià)格(單位:元/度)

一檔

0x≤180

a

二檔

180x≤400

b

三檔

x400

0.95

1)已知陳女士家三月份用電256度,繳納電費(fèi)154.56元,四月份用電318度,繳納電費(fèi)195.48元請(qǐng)你根據(jù)以上數(shù)據(jù),求出表格中的a,b的值.

25月份開(kāi)始用電增多,陳女士繳納電費(fèi)280元,求陳女士家5月份的用電量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CDAF,∠CDE=BAFABBC,∠BCD=124°,∠DEF=80°

1)觀察直線AB與直線DE的位置關(guān)系,你能得出什么結(jié)論并說(shuō)明理由.

2)求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(13分)如圖所示,四邊形中, 于點(diǎn), , ,點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn)。

(1)求證:

(2)過(guò)點(diǎn)分別作點(diǎn),作點(diǎn)。

① 試說(shuō)明為定值。

② 連結(jié),試探索:在點(diǎn)運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn),使的值最小。若存在,請(qǐng)求出該最小值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形中,

1)如圖,若,,,求的長(zhǎng);

2)如圖,若,連接,求證:平分;

3)在(2)的條件下,若,,直接寫(xiě)出的長(zhǎng)度為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋中,放有三個(gè)標(biāo)號(hào)分別為1,2,3的質(zhì)地、大小都相同的小球.任意摸出一個(gè)小球,記為x,再?gòu)氖S嗟那蛑腥我饷鲆粋(gè)小球,又記為y,得到點(diǎn)(x,y).

(1)用畫(huà)樹(shù)狀圖或列表等方法求出點(diǎn)(x,y)的所有可能情況;

(2)求點(diǎn)(x,y)在二次函數(shù)y=ax2﹣4ax+c(a≠0)圖象的對(duì)稱軸上的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案