【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),過點(diǎn)C作⊙O的切線,交BA的延長(zhǎng)線交于點(diǎn)D,過點(diǎn)B作BE⊥BA,交DC延長(zhǎng)線于點(diǎn)E,連接OE,交⊙O于點(diǎn)F,交BC于點(diǎn)H,連接AC.
(1)求證:∠ECB=∠EBC;
(2)連接BF,CF,若CF=6,sin∠FCB= ,求AC的長(zhǎng).

【答案】
(1)解:證明:∵BE⊥OB,

∴BE是⊙O的切線,∵EC是⊙O的切線,

∴EC=EB,

∴∠ECB=∠EBC


(2)解:連接CF、CO、AC.

∵EB=EC,OC=OB,

∴EO⊥BC,

∴∠CHF=∠CHO=90°,

在Rt△CFH中,∵CF=6,sin∠FCH=

∴FH=CFsin∠FCH= ,CH= =

設(shè)OC=OF=x,

在Rt△COH中,∵OC2=CH2+OH2,

∴x2=( 2+(x﹣ 2,

∴x=5,

∴OH= ,

∵OH⊥BC,

∴CH=HB,∵OA=OB,

∴AC=2OH=


【解析】(1)只要證明EB是⊙O的切線,利用切線長(zhǎng)定理可知EC=EB,即可解決問題.(2)連接CF、CO、AC.在Rt△CFH中,由CF=6,sin∠FCH= ,推出FH=CFsin∠FCH= ,CH= = ,設(shè)OC=OF=x,在Rt△COH中,由OC2=CH2+OH2 , 可得x2=( 2+(x﹣ 2 , 解得x=5,推出OH= ,再利用三角形中位線定理證明AC=2OH即可解決問題.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解切線的性質(zhì)定理(切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑),還要掌握解直角三角形(解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法))的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(2,0),B(0,4),作△BOC,使△BOC與△ABO全等,則點(diǎn)C坐標(biāo)為__________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程數(shù).“燃油效率”越高表示汽車每消耗1升汽油行駛的里程數(shù)越多;“燃油效率”越低表示汽車每消耗1升汽油行駛的里程數(shù)越少.如圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列說法中,正確的是(
A.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
B.以低于80km/h的速度行駛時(shí),行駛相同路程,三輛車中,乙車消耗汽油最少
C.以高于80km/h的速度行駛時(shí),行駛相同路程,丙車比乙車省油
D.以80km/h的速度行駛時(shí),行駛100公里,甲車消耗的汽油量約為10升

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對(duì)角線BD平分∠ABC,過點(diǎn)A作AE∥BD,交CD的延長(zhǎng)線于點(diǎn)E,過點(diǎn)E作EF⊥BC,交BC延長(zhǎng)線于點(diǎn)F.
(1)求證:四邊形ABCD是菱形;
(2)若∠ABC=45°,BC=2,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】湘西自治州風(fēng)景優(yōu)美,物產(chǎn)豐富,一外地游客到某特產(chǎn)專營(yíng)店,準(zhǔn)備購(gòu)買精加工的豆腐乳和獼猴桃果汁兩種盒裝特產(chǎn)若購(gòu)買3盒豆腐乳和2盒獼猴桃果汁共需180元購(gòu)買1盒豆腐乳和3盒獼猴桃果汁共需165元

1請(qǐng)分別求出每盒豆腐乳和每盒獼猴桃果汁的價(jià)格;

2該游客購(gòu)買了4盒豆腐乳和2盒獼猴桃果汁,共需多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點(diǎn)OEG經(jīng)過點(diǎn)O且平行于FH,分別與AB、CD交于點(diǎn)E、G

(1)若∠AFH60°,∠CHF50°,則∠EOF_____度,∠FOH_____度.

(2)若∠AFH+CHF100°,求∠FOH的度數(shù).

(拓展)如圖②,∠AFH和∠CHI的平分線交于點(diǎn)OEG經(jīng)過點(diǎn)O且平行于FH,分別與ABCD交于點(diǎn)E、G.若∠AFH+CHFα,直接寫出∠FOH的度數(shù).(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).

(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EPCD交于點(diǎn)G,點(diǎn)HMN上一點(diǎn),且GH⊥EG,求證:PF∥GH;

(3)如圖3,在(2)的條件下,連接PH,KGH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請(qǐng)求出其值;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,AB=2,BC=1,運(yùn)點(diǎn)P從點(diǎn)B出發(fā),沿路線BCD作勻速運(yùn)動(dòng),那么ABP的面積與點(diǎn)P運(yùn)動(dòng)的路程之間的函數(shù)圖象大致是( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1:y=x+n-2與直線l2:y=mx+n相交于點(diǎn)P(1,2).

(1)m,n的值;

(2)請(qǐng)結(jié)合圖象直接寫出不等式mx+n>x+n-2的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案