(2006•連云港)為了營造出“城在林中、道在綠中、房在園中、人在景中”的城市新景象,市園林局計劃在一定時間內(nèi)完成100萬畝綠化任務(wù).現(xiàn)為配合東部城區(qū)大開發(fā)的需要,市政府在調(diào)研后將原定計劃調(diào)整為:綠化面積在原計劃的基礎(chǔ)上增加20%,并且需提前1年完成.園林局經(jīng)測算知,要完成新的計劃,平均每年的綠化面積必須比原計劃平均每年多10萬畝.求原計劃平均每年的綠化面積.
【答案】分析:本題的相等關(guān)系是:原計劃完成綠化時間-實際完成綠化實際=1.設(shè)原計劃平均每年完成綠化面積x萬畝,則原計劃完成綠化完成時間年,實際完成綠化完成時間:年,列出分式方程求解.
解答:解:設(shè)原計劃平均每年完成綠化面積x萬畝.
根據(jù)題意列出方程:=1.
解這個方程得:x1=20,x2=-50.
經(jīng)檢驗,x1=20,x2=-50都是原方程的根,但因為綠化面積不能為負數(shù),所以取x=20.
答:原計劃平均每年完成綠化面積20萬畝.
點評:分析題意,找到關(guān)鍵描述語,找到合適的等量關(guān)系是解決問題的關(guān)鍵.列分式方程解應(yīng)用題的檢驗要分兩步:第一步檢驗它是否是原方程的根,第二步檢驗它是否符合實際問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•連云港)如圖,已知拋物線y=px2-1與兩坐標軸分別交于點A、B、C,點D坐標為(0,-2),△ABD為直角三角形,l為過點D且平行于x軸的一條直線.
(1)求p的值;
(2)若Q為拋物線上一動點,試判斷以Q為圓心,QO為半徑的圓與直線l的位置關(guān)系,并說明理由;
(3)是否存在過點D的直線,使該直線被拋物線所截得的線段是點D到直線與拋物線兩交點間得兩條線段的比例中項?如果存在,請求出直線解析式;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

(2006•連云港)如圖,直線y=kx+2與x軸、y軸分別交于點A、B,點C(1,a)是直線與雙曲線y=的一個交點,過點C作CD⊥y軸,垂足為D,且△BCD的面積為1.
(1)求雙曲線的解析式;
(2)若在y軸上有一點E,使得以E、A、B為頂點的三角形與△BCD相似,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(03)(解析版) 題型:選擇題

(2006•連云港)用規(guī)格為50cm×50cm的地板磚密鋪客廳恰好需要60塊.如果改用規(guī)格為acm×acm的地板磚y塊也恰好能密鋪該客廳,那么y與a之間的關(guān)系為( )
A.
B.
C.y=150000a2
D.y=150000a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年江蘇省連云港市中考數(shù)學(xué)試卷(課標卷)(解析版) 題型:解答題

(2006•連云港)如圖,已知拋物線y=px2-1與兩坐標軸分別交于點A、B、C,點D坐標為(0,-2),△ABD為直角三角形,l為過點D且平行于x軸的一條直線.
(1)求p的值;
(2)若Q為拋物線上一動點,試判斷以Q為圓心,QO為半徑的圓與直線l的位置關(guān)系,并說明理由;
(3)是否存在過點D的直線,使該直線被拋物線所截得的線段是點D到直線與拋物線兩交點間得兩條線段的比例中項?如果存在,請求出直線解析式;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年江蘇省連云港市中考數(shù)學(xué)試卷(課標卷)(解析版) 題型:選擇題

(2006•連云港)用規(guī)格為50cm×50cm的地板磚密鋪客廳恰好需要60塊.如果改用規(guī)格為acm×acm的地板磚y塊也恰好能密鋪該客廳,那么y與a之間的關(guān)系為( )
A.
B.
C.y=150000a2
D.y=150000a

查看答案和解析>>

同步練習冊答案