分析 通過證明△ABF≌△DAE,得AF=DE,AE=BF,進而求出AB和EF,根據(jù)勾股定理即可得出正方形的面積.
解答 解:∵四邊形ABCD是正方形,
∴AD=AB,
∵∠EAD+∠EDA=90°,且∠EAD+∠FAB=90°,
∴∠EDA=∠FAB,
在△ABE和△ADF中
$\left\{\begin{array}{l}{∠AED=∠AFB}\\{∠EDA=∠FAB}\\{AD=AB}\end{array}\right.$
∴△ABF≌△DAE(AAS),
即AF=DE=3,AE=BF=2,
∴AB=$\sqrt{A{F}^{2}+B{F}^{2}}$=$\sqrt{{3}^{2}+{2}^{2}}$=$\sqrt{13}$,
故正方形的面積為:($\sqrt{13}$)2=13,
故答案為13.
點評 本題考查了正方形的性質(zhì)以及全等三角形的判定和勾股定理等知識,解本題的關鍵是證明△ABF≌△DAE.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{3}$ | C. | 3 | D. | 3$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com