【題目】如圖,已知AB∥CD.
(1)發(fā)現(xiàn)問題:若∠ABF=∠ABE,∠CDF=∠CDE,則∠F與∠E的等量關系為 .
(2)探究問題:若∠ABF=∠ABE,∠CDF=∠CDE.猜想:∠F與∠E的等量關系,并證明你的結論.
(3)歸納問題:若∠ABF=∠ABE,∠CDF=∠CDE.直接寫出∠F與∠E的等量關系.
【答案】(1)∠BED=2∠BFD;(2)∠BED=3∠BFD,見解析;(3)∠BED=n∠BFD.
【解析】
(1)過點E,F分別作AB的平行線EG,FH,由平行線的傳遞性可得AB∥EG∥FH∥CD,根據(jù)平行線的性質得到∠ABF=∠BFH,∠CDF=∠DFH,從而得出∠BFD=∠CDF+∠ABF,同理可得出∠BED=∠ABE+∠CDE,最后可得出∠BED=2∠BFD;
(2)同(1)可知∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,再根據(jù)∠ABF=∠ABE,∠CDF=∠CDE即可得到結論;
(3)同(1)(2)的方法即可得出∠F與∠E的等量關系.
解:(1)過點E、F分別作AB的平行線EG,FH,由平行線的傳遞性可得AB∥EG∥FH∥CD,
∵AB∥FH,
∴∠ABF=∠BFH,
∵FH∥CD,
∴∠CDF=∠DFH,
∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;
同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE,
∵∠ABF=∠ABE,∠CDF=∠CDE,
∴∠BFD=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,
∴∠BED=2∠BFD.
故答案為:∠BED=2∠BFD;
(2)∠BED=3∠BFD.證明如下:
同(1)可得,
∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,
∵∠ABF=∠ABE,∠CDF=∠CDE,
∴∠BFD=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,
∴∠BED=3∠BFD.
(3)同(1)(2)可得,
∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,
∵∠ABF=∠ABE,∠CDF=∠CDE,
∴∠BFD=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,
∴∠BED=n∠BFD.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC=10,sin∠BAC=,過點C作CD∥AB,點E在邊AC上,AE=CD,聯(lián)結AD,BE的延長線與射線CD、射線AD分別交于點F、G.設CD=x,△CEF的面積為y.
(1)求證:∠ABE=∠CAD.
(2)如圖,當點G在線段AD上時,求y關于x的函數(shù)解析式及定義域.
(3)若△DFG是直角三角形,求△CEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,拋物線y=x2﹣2x與x軸交于O、B兩點,頂點為P,連接OP、BP,直線y=x﹣4與y軸交于點C,與x軸交于點D.
(1)寫出點B坐標;判斷△OBP的形狀;
(2)將拋物線沿對稱軸平移m個單位長度,平移的過程中交y軸于點A,分別連接CP、DP;
(i)若拋物線向下平移m個單位長度,當S△PCD= S△POC時,求平移后的拋物線的頂點坐標;
(ii)在平移過程中,試探究S△PCD和S△POD之間的數(shù)量關系,直接寫出它們之間的數(shù)量關系及對應的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,E是BC邊的中點,BF∥AC,EF∥AB,EF=4 cm.
(1)求∠F的度數(shù);
(2)求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應“書香學校,書香班級”的建設號召,平頂山市某中學積極行動,學校圖書角的新書、好書不斷增加.下面是隨機抽查該校若干名同學捐書情況統(tǒng)計圖:
請根據(jù)下列統(tǒng)計圖中的信息,解答下列問題:
(1)此次隨機調查同學所捐圖書數(shù)的中位數(shù)是 ,眾數(shù)是 ;
(2)在扇形統(tǒng)計圖中,捐2本書的人數(shù)所占的扇形圓心角是多少度?
(3)若該校有在校生1600名學生,估計該校捐4本書的學生約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD,BE.以下四個結論:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中結論正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△OAB與△OCD是以點O為位似中心的位似圖形,相似比為3:4,∠OCD=90°,∠AOB=60°,若點B的坐標是(6,0),則點C的坐標是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一群女生住間宿舍,每間住4人,剩下18人無房住,每間住6人,有一間宿舍住不滿,但有學生。
(1)用含的代數(shù)式表示女生人數(shù).
(2)根據(jù)題意,列出關于的不等式組,并求不等式組的解集.
(3)根據(jù)(2)的結論,問一共可能有多少間宿舍,多少名女生?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將圓形轉盤三等分,分別標上1、2、3三個數(shù)字,代表雞、猴、鼠三種生肖郵票(每種郵票各兩枚,雞年郵票面值“0.80元”,其它郵票都是面值“1.20元”),轉動轉盤后,指針每落在某個數(shù)字所在扇形一次就表示獲得該種郵票一枚.
(1)任意轉動轉盤一次,獲得雞年郵票的概率是 ;
(2)任意轉動轉盤兩次,求獲得的兩枚郵票可以郵寄一封需2.4元郵資的信件的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com