【題目】如圖,⊿ABC中,∠A=40°,∠ACB=104°,BD為AC邊上的高,BE是⊿ABC的角平分線,求∠EBD的度數(shù).
【答案】32°
【解析】試題分析:根據(jù)三角形的內(nèi)角和定理求出∠ABC,再根據(jù)角平分線的定義求出∠ABE,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式求出∠BED,再根據(jù)直角三角形兩銳角互余列式進(jìn)行計(jì)算即可得解.
試題解析:由三角形內(nèi)角和定理,得∠B+∠ACB+∠BAC=180°,
又∠A=40°,∠ACB=104°,
∴∠ABC=180°-40°-104°=36°,
又∵BE平分∠ABC,
∴∠ABE=∠ABC=18°
∴∠BED=∠A+∠ABE=40°+18°=58°,
又∵∠BED+∠DBE=90°,
∴∠DBE=90°-∠BED=90°-58°=32°.
【題型】解答題
【結(jié)束】
25
【題目】已知,如圖, AB∥CD,∠1=∠2,那么∠E和∠F相等嗎? 為什么?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程或方程組解應(yīng)用題:
某中學(xué)為迎接校運(yùn)會,籌集7000元購買了甲、乙兩種品牌的籃球共30個(gè),其中購買甲品牌籃球花費(fèi)3000元,已知甲品牌籃球比乙品牌籃球的單價(jià)高50%,求乙品牌籃球的單價(jià)及個(gè)數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),已點(diǎn)A(3,0)、B(-5,3),將點(diǎn)A向左平移6個(gè)單位到達(dá)C點(diǎn),將點(diǎn)B向下平移6個(gè)單位到達(dá)D點(diǎn).
(1)寫出C點(diǎn)、D點(diǎn)的坐標(biāo):C __________,D ____________ ;
(2)把這些點(diǎn)按A-B-C-D-A順次連接起來,這個(gè)圖形的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,且AB=AC,直徑AD交BC于點(diǎn)E,F(xiàn)是OE上的一點(diǎn),使CF∥BD.
(1)求證:BE=CE;
(2)試判斷四邊形BFCD的形狀,并說明理由;
(3)若BC=8,AD=10,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求符合下列條件的拋物線的解析式:
(1)將拋物線y=-x2先向上平移1個(gè)單位長度,再繞其頂點(diǎn)旋轉(zhuǎn)180°;
(2)拋物線y=ax2+1經(jīng)過點(diǎn)(1,0);
(3)拋物線y=ax2-1與直線y=x+3的一個(gè)交點(diǎn)是(2,m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,以BC為直徑的⊙O交AB于點(diǎn)D,AE平分∠BAC交BC于點(diǎn)E,交CD于點(diǎn)F.且CE=CF.
(1)求證:直線CA是⊙O的切線;
(2)若BD=DC,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,
(1)試推導(dǎo)x1+x2=-,x1·x2=;
(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com