【題目】如圖,四邊形ABCD是平行四邊形,以點(diǎn)A為圓心、AB的長(zhǎng)為半徑畫弧交AD于點(diǎn)F,再分別以點(diǎn)B,F為圓心、大于BF的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)M,作射線AM交BC于點(diǎn)E,連接EF.下列結(jié)論中不一定成立的是( )
A. BE=EFB. EF∥CDC. AE平分∠BEFD. AB=AE
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,菱形中,,是對(duì)角線上的一點(diǎn),點(diǎn)在的延長(zhǎng)線上,且,交于,連接.
(1)證明:;
(2)判斷的形狀,并說(shuō)明理由.
(3)如圖2,把菱形改為正方形,其他條件不變,直接寫出線段與線段的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,和的平分線相交于點(diǎn),過(guò)點(diǎn)作交于點(diǎn),交于點(diǎn),交于點(diǎn),連接.給出以下四個(gè)結(jié)論:
①若,;
②;
③平分;
④若,,則.
其中正確的有________.(把所有正確結(jié)論的序號(hào)都選上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系中的兩個(gè)圖形K1和K2,給出如下定義:點(diǎn)G為圖形K1上任意一點(diǎn),點(diǎn)H為K2圖形上任意一點(diǎn),如果G,H兩點(diǎn)間的距離有最小值,則稱這個(gè)最小值為圖形K1和K2的“近距離”。如圖1,已知△ABC,A(-1,-8),B(9,2),C(-1,2),邊長(zhǎng)為的正方形PQMN,對(duì)角線NQ平行于x軸或落在x軸上.
(1)填空:
①原點(diǎn)O與線段BC的“近距離”為 ;
②如圖1,正方形PQMN在△ABC內(nèi),中心O’坐標(biāo)為(m,0),若正方形PQMN與△ABC的邊界的“近距離”為1,則m的取值范圍為 ;
(2)已知拋物線C:,且-1≤x≤9,若拋物線C與△ABC的“近距離”為1,求a的值;
(3)如圖2,已知點(diǎn)D為線段AB上一點(diǎn),且D(5,-2),將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0<α≤180),將旋轉(zhuǎn)中的△ABC記為△AB’C’,連接DB’,點(diǎn)E為DB’的中點(diǎn),當(dāng)正方形PQMN中心O’坐標(biāo)為(5,-6),直接寫出在整個(gè)旋轉(zhuǎn)過(guò)程中點(diǎn)E運(yùn)動(dòng)形成的圖形與正方形PQMN的“近距離”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)為了解飲料自動(dòng)售賣機(jī)的銷售情況,對(duì)甲、乙兩個(gè)城市的飲料自動(dòng)售賣機(jī)進(jìn)行了抽樣調(diào)查,從兩個(gè)城市中所有的飲料自動(dòng)售賣機(jī)中分別隨機(jī)抽取16臺(tái),記錄下某一天各自的銷售情況(單位:元)如下:
甲:25,45,44,22,10,28,61,18,38,45,78,45,58,32,16,72
乙:48,52,21,25,33,12,42,39,41,42,33,44,33,18,68,72
整理、描述數(shù)據(jù),對(duì)銷售金額進(jìn)行分組,各組的頻數(shù)如下:
銷售金額 | ||||
甲 | 3 | 5 | 5 | 3 |
乙 | 2 | 6 |
分析數(shù)據(jù),兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)如下表所示:
城市 | 中位數(shù) | 平均數(shù) | 眾數(shù) |
甲 | 39.8 | 45 | |
乙 | 40 | 38.9 |
請(qǐng)根據(jù)以上信息,回答下列問(wèn)題:
(1)填空:________,________,________,________
(2)兩個(gè)城市目前共有飲料自動(dòng)售賣機(jī)4000臺(tái),估計(jì)日銷售金額不低于40元的數(shù)量約為多少臺(tái)?
(3)根據(jù)以上數(shù)據(jù),你認(rèn)為甲、乙哪個(gè)城市的飲料自動(dòng)售賣機(jī)銷售情況較好?請(qǐng)說(shuō)明理由(一條理由即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某縣建檔立卡貧困戶對(duì)精準(zhǔn)扶貧政策落實(shí)的滿意度,現(xiàn)從全縣建檔立卡貧困戶中隨機(jī)抽取了部分貧困戶進(jìn)行了調(diào)查(把調(diào)查結(jié)果分為四個(gè)等級(jí):A級(jí):非常滿意;B級(jí):滿意;C級(jí):基本滿意;D級(jí):不滿意),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解決下列問(wèn)題:
(1)本次抽樣調(diào)查測(cè)試的建檔立卡貧困戶的總戶數(shù)______.
(2)圖1中,∠α的度數(shù)是______,并把圖2條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)某縣建檔立卡貧困戶有10000戶,如果全部參加這次滿意度調(diào)查,請(qǐng)估計(jì)非常滿意的人數(shù)約為多少戶?
(4)調(diào)查人員想從5戶建檔立卡貧困戶(分別記為)中隨機(jī)選取兩戶,調(diào)查他們對(duì)精準(zhǔn)扶貧政策落實(shí)的滿意度,請(qǐng)用列表或畫樹(shù)狀圖的方法求出選中貧困戶的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華詩(shī)詞,寓意深廣.為了傳承優(yōu)秀傳統(tǒng)文化,我市某校團(tuán)委組織了一次全校2000名學(xué)生參加的“中國(guó)詩(shī)詞大會(huì)”海選比賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分,為了更好地了解本次海選比賽的成績(jī)分布情況,隨機(jī)抽取了其中200名學(xué)生的海選比賽成績(jī)(成績(jī)x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列統(tǒng)計(jì)圖表:
抽取的200名學(xué)生海選成績(jī)分組表
組別 | 海選成績(jī)x |
A組 | 50≤x<60 |
B組 | 60≤x<70 |
C組 | 70≤x<80 |
D組 | 80≤x<90 |
E組 | 90≤x<100 |
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1)請(qǐng)把圖1中的條形統(tǒng)計(jì)圖補(bǔ)充完整;(溫馨提示:請(qǐng)畫在答題卷相對(duì)應(yīng)的圖上)
(2)在圖2的扇形統(tǒng)計(jì)圖中,記表示B組人數(shù)所占的百分比為a%,則a的值為 ,表示C組扇形的圓心角θ的度數(shù)為 度;
(3)規(guī)定海選成績(jī)?cè)?0分以上(包括90分)記為“優(yōu)等”,請(qǐng)估計(jì)該校參加這次海選比賽的2000名學(xué)生中成績(jī)“優(yōu)等”的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=2x+2與y軸交于A點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)M,過(guò)M作MH⊥x軸于點(diǎn)H,且tan∠AHO=2.
(1)求H點(diǎn)的坐標(biāo)及k的值;
(2)點(diǎn)P在y軸上,使△AMP是以AM為腰的等腰三角形,請(qǐng)直接寫出所有滿足條件的P點(diǎn)坐標(biāo);
(3)點(diǎn)N(a,1)是反比例函數(shù)y=(x>0)圖象上的點(diǎn),點(diǎn)Q(m,0)是x軸上的動(dòng)點(diǎn),當(dāng)△MNQ的面積為3時(shí),請(qǐng)求出所有滿足條件的m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的對(duì)角線交于點(diǎn)O,以OD,CD為鄰邊作平行四邊形DOEC,OE交BC于點(diǎn)F,連結(jié)BE.
(1)求證:F為BC中點(diǎn).
(2)若OB⊥AC,OF=1,求平行四邊形ABCD的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com