【題目】已知:如圖,在△ABC中,AB=AC,AB的垂直平分線DE分別交AB、AC于D、E.
(1)若AC=12,BC=10,求△EBC的周長;
(2)若∠A=40°,求∠EBC的度數(shù).
【答案】(1)△EBC的周長=22;(2)∠EBC=30°.
【解析】
(1)根據(jù)線段垂直平分線的性質(zhì)可得EA=EB,進(jìn)一步即可求得結(jié)果;
(2)先根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理求出∠ABC的度數(shù),再利用等邊對等角求出∠EBA的度數(shù),即可求出結(jié)果.
解:(1)∵DE是AB的垂直平分線,∴EA=EB,
∴△EBC的周長=EB+EC+BC=EA+EC+BC=AC+BC=12+10=22.
(2)∵AB=AC,
∴∠ABC=∠C,
∵∠A=40°,∴∠ABC=,
∵EA=EB,∴∠EBA=∠A=40°,
∴∠EBC=∠ABC-∠EBA=70°-40°=30°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB =AC,AD⊥BC于點(diǎn)D,AM是△ABC的外角∠CAE的平分線.
(1)求證:AM∥BC;
(2)若DN平分∠ADC交AM于點(diǎn)N,判斷△ADN的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在平面直角坐標(biāo)系中,三角形ABC的頂點(diǎn)坐標(biāo)分別是A(1,1);B(2,﹣1);C(4,3),將三角形ABC向左平移2個單位長度,再向上平移3個單位長度后得三角形A1B1C1.
(1)畫出三角形A1B1C1;
(2)分別寫出A1、B1、C1的坐標(biāo);
(3)求三角形A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全等三角形又叫做合同三角形,平面內(nèi)的合同三角形分為真正合同三角形與鏡面合同三角形,假設(shè)△ABC和△A1B1C1是合同三角形,點(diǎn)A與點(diǎn)A1對應(yīng),點(diǎn)B與點(diǎn)B1對應(yīng),點(diǎn)C與點(diǎn)C1對應(yīng),當(dāng)沿周界A→B→C→A,及A1→B1→C1→A1環(huán)繞時,若運(yùn)動方向相同,則稱它們是真正合同三角形(如圖1),若運(yùn)動方向相反,則稱它們是鏡面合同三角形(如圖2),兩個真正合同三角形都可以在平面內(nèi)通過平移或旋轉(zhuǎn)使它們重合,兩個鏡面合同三角形要重合,則必須將其中一個翻轉(zhuǎn)180°.下列各組合同三角形中,是鏡面合同三角形的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD為∠BAC的平分線,DE⊥AB于E,DF⊥AC于F,
(1)證明AE=AF;
(2)若△ABC面積是36cm2,AB=10cm,AC=8cm,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點(diǎn)設(shè)點(diǎn),欲在拋物線的對稱軸上確定一點(diǎn)D,使得的值最大,則D點(diǎn)的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜基地加工廠有工人100人,現(xiàn)對100人進(jìn)行工作分工,或采摘蔬菜,或?qū)Ξ?dāng)日采摘的蔬菜進(jìn)行精加工,每人每天只能做一項(xiàng)工作,若采摘蔬菜,每人每天平均采摘48kg;若對當(dāng)日采摘的蔬菜進(jìn)行精加工,每人每天可精加工每天精加工的蔬菜和沒來得及精加工的蔬菜全部售出已知每千克蔬菜直接出售可獲利潤1元,精加工后再出售,每千克可獲利潤3元,設(shè)每天安排x名工人進(jìn)行蔬菜精加工.
求每天蔬菜精加工后再出售所得利潤元與人的函數(shù)關(guān)系式;
如何安排精加工人數(shù)才能使一天所獲的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃從各班各抽出1名學(xué)生作為代表參加學(xué)校組織的海外游學(xué)計(jì)劃,明明和華華都是本班的候選人,經(jīng)過老師與同學(xué)們商量,用所學(xué)的概率知識設(shè)計(jì)摸球游戲決定誰去,設(shè)計(jì)的游戲規(guī)則如下:取M、N兩個不透明的布袋,分別放入黃色和白色兩種除顏色外均相同的乒乓球,其中M布袋中放置3個黃色的乒乓球和2個白色的乒乓球;N布袋中放置1個黃色的乒乓球,3個白色的乒乓球明明從M布袋摸一個乒乓球,華華從N布袋摸一個乒乓球進(jìn)行試驗(yàn),若兩人摸出的兩個乒乓球都是黃色,則明明去;若兩人摸出的兩個乒乓球都是白色,則華華去;若兩人摸出乒乓球顏色不一樣,則放回重復(fù)以上動作,直到分出勝負(fù)為止根據(jù)以上規(guī)則回答下列:
求一次性摸出一個黃色乒乓球和一個白色乒乓球的概率;
判斷該游戲是否公平?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB兩端點(diǎn)坐標(biāo)分別為A(﹣1,5)、B(3,3),線段CD兩端點(diǎn)坐標(biāo)分別為C(5,3)、D (3,﹣1)數(shù)學(xué)課外興趣小組研究這兩線段發(fā)現(xiàn):其中一條線段繞著某點(diǎn)旋轉(zhuǎn)一個角度可得到另一條線段,請寫出旋轉(zhuǎn)中心的坐標(biāo)________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com