【題目】已知如圖是三個(gè)方向看到的一個(gè)幾何體的形狀.
(1)寫出這個(gè)幾何體的名稱;
(2)寫出它的側(cè)面展開的形狀;
(3)若從正面看到的高為10cm,從上面看到的三角形的三邊長(zhǎng)都為4cm,求這個(gè)幾何體的側(cè)面積.
【答案】(1)正三棱柱;(2)見(jiàn)解析;(3)120cm2
【解析】
試題(1)只有柱體的主視圖和左視圖才能出現(xiàn)長(zhǎng)方形,根據(jù)俯視圖是三角形,可得到此幾何體為三棱柱;
(2)應(yīng)該會(huì)出現(xiàn)三個(gè)長(zhǎng)方形,兩個(gè)三角形;
(3)側(cè)面為3個(gè)長(zhǎng)方形,它的長(zhǎng)和寬分別為10cm,4cm,計(jì)算出一個(gè)長(zhǎng)方形的面積,乘3即可.
試題解析:(1)根據(jù)三視圖可得這個(gè)幾何體為三棱柱.
(2)它的平面展開圖如圖所示:(答案不唯一,畫對(duì)即可)
(3)根據(jù)題意可知這個(gè)三棱柱的高為10cm,底為邊長(zhǎng)為4cm的等邊三角形,這個(gè)三棱柱的側(cè)面是由三個(gè)全等的矩形組成,且矩形的長(zhǎng)為10cm,寬為4cm,所以這個(gè)三棱柱的側(cè)面積為三個(gè)矩形的面積之和,即10×4×3=120cm2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(-1,5),B(-4,3),C(-1,0)
(1)在圖中畫出△ABC關(guān)于軸的對(duì)稱圖形△A1B1C1.
(2)寫出點(diǎn)A1,B1,C1的坐標(biāo).
(3)計(jì)算四邊形BCC1B1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為A(-3,2),B(-4,-3),C(-1,-1)。
(1)寫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1 的各頂點(diǎn)坐標(biāo);
(2)畫出△ABC關(guān)于y軸對(duì)稱的△A2B2C2;
(3)求△A2B2C2的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場(chǎng)調(diào)查整理出如下信息:
①該產(chǎn)品90天售量(n件)與時(shí)間(第x天)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
時(shí)間(第x天) | 1 | 2 | 3 | 10 | … |
日銷售量(n件) | 198 | 196 | 194 | ? | … |
②該產(chǎn)品90天內(nèi)每天的銷售價(jià)格與時(shí)間(第x天)的關(guān)系如下表:
時(shí)間(第x天) | 1≤x<50 | 50≤x≤90 |
銷售價(jià)格(元/件) | x+60 | 100 |
(1)求出第10天日銷售量;
(2)設(shè)銷售該產(chǎn)品每天利潤(rùn)為y元,請(qǐng)寫出y關(guān)于x的函數(shù)表達(dá)式,并求出在90天內(nèi)該產(chǎn)品的銷售利潤(rùn)最大?最大利潤(rùn)是多少?(提示:每天銷售利潤(rùn)=日銷售量×(每件銷售價(jià)格-每件成本))
(3)在該產(chǎn)品銷售的過(guò)程中,共有多少天銷售利潤(rùn)不低于5400元,請(qǐng)直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一小孩將一只皮球從A處拋出去,它所經(jīng)過(guò)的路線是某個(gè)二次函數(shù)圖象的一部分,如果他的出手處A距地面的距離OA為1m,球路的最高點(diǎn)B(8,9),則這個(gè)二次函數(shù)的表達(dá)式為______,小孩將球拋出了約______米(精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,∠BAC的平分線與AB的中垂線交于點(diǎn)O,點(diǎn)C沿EF折疊后與點(diǎn)O重合.若∠CEF=50°,則∠AOF的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知R△ABDC中,∠C=90°,AD、BE是角平分線,它們相交于P,PF⊥AD于P交BC的延長(zhǎng)線于F,交AC于H.
(1)求證:AH+BD=AB;
(2)求證:PF=PA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在△ABC中,∠A=∠ABC,直線EF分別交△ABC的邊AB,AC和CB的延長(zhǎng)線于點(diǎn)D,E,F.
(1)求證:∠F+∠FEC=2∠A;
(2)過(guò)B點(diǎn)作BM∥AC交FD于點(diǎn)M,試探究∠MBC與∠F+∠FEC的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在銳角三角形ABC中,AB=4,△ABC的面積為8,BD平分∠ABC。若M、N分別是BD、BC上的動(dòng)點(diǎn),則CM+MN的最小值是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com