精英家教網 > 初中數學 > 題目詳情
在梯形ABCD中,AB∥CD,AD=BC,延長AB到E,使BE=CD,連接CE.
(1)求證:CE=CA;
(2)在上述條件下,若AF⊥CE于點F,且AF平分∠DAE,CD:AE=3:8,求cos∠ACF的值.

【答案】分析:(1)證明DBEC為平行四邊形,即可證CE=CA.
(2)充分利用平行線分線段成比例定理,求得CF:AC即可.
解答:(1)證明:∵BE∥CD,BE=CD,
∴四邊形DBEC為平行四邊形.
∴CE=DB.
∵DB=AC,
∴CE=CA.

(2)解:延長EC交AD的延長線于G,
∵CD∥AE
=,設GC=3a,則GE=8a,故CE=5a,
∵△AEG為等腰三角形,
∴GF=EF=4a,于是CF=GF-GC=a,
則CA=CE=5a.(7分)
∴cos∠ACF=
點評:做等腰梯形一腰的平行線構造平行四邊形,或者延長兩腰相交構造三角形是梯形題常用的輔助線方法.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

10、如圖,在梯形ABCD中,若AB∥CD,BD=AD,∠BCD=110°,∠CBD=30°,則∠ADC=
140°

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點,給出下面三個論斷:①AD=BC;②DE=CE;③AE=BE.請你以其中的兩個論斷為條件,填入“已知”欄中,以一個論斷作為結論,填入“求證”欄中,使之成為一個正確的命題,并證明之.
已知:如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點,
AD=BC,AE=BE
AD=BC,AE=BE

求證:
DE=CE
DE=CE

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AD=AB,過點A作AE∥DB交CB的延長線于點E.
(1)試說明∠ABD=∠CBD.
(2)若∠C=2∠E,試說明AB=DC.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=AD,BD=BC,∠A=100°,則∠BDC的度數為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=
8
cm,AD=3cm,DC=
5
cm,∠B=45°,點P是下底BC邊上的一個動點,從B向C以2cm/s的速度運動,到達點C時停止運動,設運動的時間為t(s).
(1)求BC的長;
(2)當t為何值時,四邊形APCD是等腰梯形;
(3)當t為何值時,以A、B、P為頂點的三角形是等腰三角形.

查看答案和解析>>

同步練習冊答案