【題目】P是三角形ABC內(nèi)一點,射線PD∥AC,射線PE∥AB.
(1)當(dāng)點D,E分別在AB,BC上時,
①補全圖1;
②猜想∠DPE與∠A的數(shù)量關(guān)系,并證明;
(2)當(dāng)點D,E都在線段BC上時,你在(1)中所得結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.
【答案】(1)①補全圖形,如圖所示.見解析;②∠DPE+∠A=180°,證明見解析;(2)不成立,此時∠DPE=∠A.理由見解析.
【解析】
(1)根據(jù)平行線的性質(zhì),即可得到∠A=∠BDP,∠DPE+∠BDP=180°,即可得到∠DPE與∠A的數(shù)量關(guān)系.
(2)先反向延長射線PD交AB于點D1,可知∠DPE+∠D1PE=180°,由(1)結(jié)論可知∠D1PE+∠A=180°,進(jìn)而得出∠DPE=∠A.
(1)①補全圖形,如圖1所示.
②∠DPE+∠A=180°.
證明:∵PD∥AC,
∴∠A=∠BDP.
∵PE∥AB,
∴∠DPE+∠BDP=180°,
∴∠DPE+∠A=180°.
(2)不成立,此時∠DPE=∠A.
理由如下:如圖2,反向延長射線PD交AB于點D1,可知∠DPE+∠D1PE=180°.
由(1)結(jié)論可知∠D1PE+∠A=180°.
∴∠DPE=∠A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛客車從甲地開往乙地,一輛轎車從乙地開往甲地,兩車同時出發(fā),兩車行駛x小時后,記客車離甲地的距離y1千米,轎車離甲地的距離y2千米,y1、y2關(guān)于x的函數(shù)圖象如圖所示:
①根據(jù)圖象直接寫出y1、y2關(guān)于x的函數(shù)關(guān)系式;
②當(dāng)兩車相遇時,求此時客車行駛的時間.
③相遇后,兩車相距200千米時,求客車又行駛的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】其工廠甲.乙兩個部門各有員工人,為了解這兩個部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過程如下,請補充完整.
收集數(shù)據(jù)
從甲、乙兩個部門各隨機(jī)抽取名員工進(jìn)行了生產(chǎn)技能測試,測試成績(百分制)如下:
甲:78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙:93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述數(shù)據(jù)
(1)按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
成績?nèi)藬?shù)部門 | ||||||
甲 | ||||||
乙 |
(說明:成績分及以上為生產(chǎn)技能優(yōu)秀,分為生產(chǎn)技能良好,分為生產(chǎn)技能合格,分以下為生產(chǎn)技能不合格)
(2)若按照甲部門的樣本數(shù)據(jù),在列頻數(shù)分布表時,若取組距為,則這小組的頻數(shù)為 ,頻率為 ;
(3)若按照乙部門的樣本數(shù)據(jù)畫出扇形統(tǒng)計圖,則表示生產(chǎn)技能優(yōu)秀部分的圓心角是 度;
得出結(jié)論:
(4)估計乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為 ;
(5)可以推斷出部門員工的生產(chǎn)技能水平較高,你的理由為 (說出一條即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),在正方形一邊上取中點,并沿虛線剪開,用兩塊圖形拼一拼,能否拼出平行四邊形、梯形或三角形?畫圖解釋你的判斷.
(2)如圖(2)E為正方形ABCD邊BC的中點,F為DC的中點,BF與AE有何關(guān)系?請解釋你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與坐標(biāo)軸交于, , 三點,其中點的坐標(biāo)為,點的坐標(biāo)為,連接, .動點從點出發(fā),在線段上以每秒個單位長度的速度向點作勻速運動;同時,動點從點出發(fā),在線段上以每秒個單位長度的速度向點作勻速運動,當(dāng)其中一點到達(dá)終點時,另一點隨之停止運動,設(shè)運動時間為秒.連接.
()填空: __________, __________.
()在點, 運動過程中, 可能是直角三角形嗎?請說明理由.
()在軸下方,該二次函數(shù)的圖象上是否存在點,使是以點為直角頂點的等腰直角三角形?若存在,請求出運動時間;若不存在,請說明理由.
()如圖②,點的坐標(biāo)為,線段的中點為,連接,當(dāng)點關(guān)于直線的對稱點恰好落在線段上時,請直接寫出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD中,以BF為底向正方形外側(cè)作等腰直角三角形BEF,連接DF,取DF的中點G,連接EG,CG.
(1)如圖1,當(dāng)點A與點F重合時,猜想EG與CG的數(shù)量關(guān)系為 ,EG與CG的位置關(guān)系為 ,請證明你的結(jié)論.
(2)如圖2,當(dāng)點F在AB上(不與點A重合)時,(1)中結(jié)論是否仍然成立?請說明理由;如圖3,點F在AB的左側(cè)時,(1)中的結(jié)論是否仍然成立?直接做出判斷,不必說明理由.
(3)在圖2中,若BC=4,BF=3,連接EC,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知DE∥BC,∠3=∠B,則∠1+∠2=180°.下面是王寧同學(xué)的思考過程,請你在括號內(nèi)填上理由、依據(jù)或內(nèi)容。
思考過程
因為 DE∥BC(已知)
所以∠3=∠EHC ( )
因為∠3=∠B(已知)
所以∠B=∠EHC ( )
所以 AB∥EH ( )
∠2+ ( )=180°( )
因為∠1=∠4( )
所以∠1+∠2=180°(等量代換)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副三角尺按圖①所示的方式疊放在一起,現(xiàn)將含45°角的三角尺ADE固定不動,把含30°角的三角尺ABC繞頂點A順時針旋轉(zhuǎn)角α(α=∠BAD且0°<α<180°),使兩塊三角尺至少有一組邊平行.
(1)如圖②,當(dāng)α=________°時,BC∥DE.
(2)請你分別在圖③,④中,各畫一種符合要求的圖形,標(biāo)出α,并完成下列各題.
圖③中,當(dāng)α=________°時,________∥________;
圖④中,當(dāng)α=________°時,________∥________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,拋物線交x軸于A、B兩點,交y軸于點C,且對稱軸為x=﹣2,點P(0,t)是y軸上的一個動點.
(1)求拋物線的解析式及頂點D的坐標(biāo).
(2)如圖1,當(dāng)0≤t≤4時,設(shè)△PAD的面積為S,求出S與t之間的函數(shù)關(guān)系式;S是否有最小值?如果有,求出S的最小值和此時t的值.
(3)如圖2,當(dāng)點P運動到使∠PDA=90°時,Rt△ADP與Rt△AOC是否相似?若相似,求出點P的坐標(biāo);若不相似,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com