科目: 來源: 題型:
一個(gè)不透明的口袋中,裝有若干個(gè)除顏色外其余都相同的球,如果口袋中裝有4個(gè)紅球且摸到紅球的概率為,那么口袋中球的總數(shù)為( )
A.8個(gè) B.6個(gè) C. 4個(gè) D.2個(gè)
查看答案和解析>>
科目: 來源: 題型:
某市啟動(dòng)了歷史上規(guī)模最大的軌道交通投資建設(shè),預(yù)計(jì)某市軌道交通投資將達(dá)到
51 800 000 000元人民幣. 將51 800 000 000用科學(xué)記數(shù)法表示正確的是( )
A. 5.18×1010 B. 51.8×109 C. 0.518×1011 D. 5.18×108
查看答案和解析>>
科目: 來源: 題型:
(1)探究新知:
①如圖,已知AD∥BC,AD=BC,點(diǎn)M,N是直線CD上任意兩點(diǎn).求證:△ABM與△ABN的面積相等.
②如圖,已知AD∥BE,AD=BE,AB∥CD∥EF,點(diǎn)M是直線CD上任一點(diǎn),點(diǎn)G是直線EF上任一點(diǎn).試判斷△ABM與△ABG的面積是否相等,并說明理由.
(2)結(jié)論應(yīng)用:
如圖③,拋物線的頂點(diǎn)為C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)D.試探究在拋物線上是否存在除點(diǎn)C以外的點(diǎn)E,使得△ADE與△ACD的面積相等? 若存在,請(qǐng)求出此時(shí)點(diǎn)E的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
某工廠計(jì)劃為某山區(qū)學(xué)校生產(chǎn)A,B兩種型號(hào)的學(xué)生桌椅500套,以解決1250名學(xué)生的學(xué)習(xí)問題,一套A型桌椅(一桌兩椅)需木料0.5m,一套B型桌椅(一桌三椅)需木料0.7 m,工廠現(xiàn)有庫(kù)存木料302 m.
(1)有多少種生產(chǎn)方案?
(2)現(xiàn)要把生產(chǎn)的全部桌椅運(yùn)往該學(xué)校,已知每套型桌椅的生產(chǎn)成本為100元,運(yùn)費(fèi)2元;每套B型桌椅的生產(chǎn)成本為120元,運(yùn)費(fèi)4元,求總費(fèi)用y(元)與生產(chǎn)A型桌椅x(套)之間的關(guān)系式,并確定總費(fèi)用最少的方案和最少的總費(fèi)用.(總費(fèi)用生產(chǎn)成本運(yùn)費(fèi))
(3)按(2)的方案計(jì)算,有沒有剩余木料?如果有,請(qǐng)直接寫出用剩余木料再生產(chǎn)以上兩種型號(hào)的桌椅,最多還可以為多少名學(xué)生提供桌椅;如果沒有,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
小平所在的學(xué)習(xí)小組發(fā)現(xiàn),車輛轉(zhuǎn)彎時(shí),能否順利通過直角彎道的標(biāo)準(zhǔn)是,車輛是否可以行駛到和路的邊界夾角是45°的位置(如圖1中②的位置).例如,圖2是某巷子的俯視圖,巷子路面寬4 m,轉(zhuǎn)彎處為直角,車輛的車身為矩形ABCD,CD與DE、CE的夾角都是45°時(shí),連接EF,交CD于點(diǎn)G,若GF的長(zhǎng)度至少能達(dá)到車身寬度,即車輛能通過.
(1)小平認(rèn)為長(zhǎng)8m,寬3m的消防車不能通過該直角轉(zhuǎn)彎,請(qǐng)你幫他說明理由;
(2)小平提出將拐彎處改為圓。和是以O為圓心,分別以OM和ON為半徑的。,長(zhǎng)8m,寬3m的消防車就可以通過該彎道了,具體的方案如圖3,其中OM⊥OM′,你能幫小平算出,ON至少為多少時(shí),這種消防車可以通過該巷子,?
查看答案和解析>>
科目: 來源: 題型:
如圖,D是⊙O直徑CA延長(zhǎng)線上一點(diǎn),點(diǎn)B在⊙O上,且.
(1)求證:BD是⊙O的切線。
(2)若E是劣弧 上一點(diǎn),AE與BC相交于點(diǎn)F,的面積為8,且,求的面積。
查看答案和解析>>
科目: 來源: 題型:
學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如3+2=(1+),善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n)(其中a、b、m、n均為正整數(shù)),則有a+b=m2+2n2+2mn,
∴a= m2+2n2,b=2mn.這樣小明就找到了一種把部分a+b的式子化為平方式的方法.
請(qǐng)你仿照小明的方法探索并解決下列問題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n),用含m、n的式子分別表示a、b,得:a= , b= ;
(2)利用所探索的結(jié)論,找一組正整數(shù)a、b、m、n填空: +
=( + );
(3)若a+4=(m+n),且a、m、n均為正整數(shù),求a的值.
查看答案和解析>>
科目: 來源: 題型:
學(xué)生的學(xué)業(yè)負(fù)擔(dān)過重會(huì)嚴(yán)重影響學(xué)生對(duì)待學(xué)習(xí)的態(tài)度.為此杭州市教育部門對(duì)部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):對(duì)學(xué)習(xí)很感興趣;B級(jí):對(duì)學(xué)習(xí)較感興趣;C級(jí):對(duì)學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問題:(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補(bǔ)充完整;(3根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)我市近80000名八年級(jí)學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com