相關習題
 0  125610  125618  125624  125628  125634  125636  125640  125646  125648  125654  125660  125664  125666  125670  125676  125678  125684  125688  125690  125694  125696  125700  125702  125704  125705  125706  125708  125709  125710  125712  125714  125718  125720  125724  125726  125730  125736  125738  125744  125748  125750  125754  125760  125766  125768  125774  125778  125780  125786  125790  125796  125804  366461 

科目: 來源:第2章《二次函數》中考題集(34):2.7 最大面積是多少(解析版) 題型:解答題

如圖,在平面直角坐標系中,點O為坐標原點,以點A(0,-3)為圓心,5為半徑作圓A,交x軸于B,C兩點,交y軸于點D,E兩點.
(1)求點B,C,D的坐標;
(2)如果一個二次函數圖象經過B,C,D三點,求這個二次函數解析式;
(3)P為x軸正半軸上的一點,過點P作與圓A相離并且與x軸垂直的直線,交上述二次函數圖象于點F,當△CPF中一個內角的正切之為時,求點P的坐標.

查看答案和解析>>

科目: 來源:第2章《二次函數》中考題集(34):2.7 最大面積是多少(解析版) 題型:解答題

如圖,已知直線l1的解析式為y=3x+6,直線l1與x軸,y軸分別相交于A,B兩點,直線l2經過B,C兩點,點C的坐標為(8,0),又已知點P在x軸上從點A向點C移動,點Q在直線l2從點C向點B移動.點P,Q同時出發(fā),且移動的速度都為每秒1個單位長度,設移動時間為t秒(1<t<10).
(1)求直線l2的解析式;
(2)設△PCQ的面積為S,請求出S關于t的函數關系式;
(3)試探究:當t為何值時,△PCQ為等腰三角形?

查看答案和解析>>

科目: 來源:第2章《二次函數》中考題集(34):2.7 最大面積是多少(解析版) 題型:解答題

如圖,拋物線y=x2+bx-2與x軸交于A、B兩點,與y軸交于C點,且A(-1,0).
(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,證明你的結論;
(3)點M(m,0)是x軸上的一個動點,當MC+MD的值最小時,求m的值.
[注:拋物線y=ax2+bx+c的頂點坐標為(-,).].

查看答案和解析>>

科目: 來源:第2章《二次函數》中考題集(35):2.7 最大面積是多少(解析版) 題型:解答題

一條拋物線y=x2+mx+n經過點(0,3)與(4,3).
(1)求這條拋物線的解析式,并寫出它的頂點坐標;
(2)現有一半徑為1,圓心P在拋物線上運動的動圓,當⊙P與坐標軸相切時,求圓心P的坐標;
(3)⊙P能與兩坐標軸都相切嗎?如果不能,試通過上下平移拋物線y=x2+mx+n,使⊙P與兩坐標軸都相切.(要說明平移方法)

查看答案和解析>>

科目: 來源:第2章《二次函數》中考題集(35):2.7 最大面積是多少(解析版) 題型:解答題

如圖:已知在等腰直角三角形ABC中,∠C=90°,AC=BC=2,將一個含30°的直角三角形DEF的最小內角所在的頂點D與直角三角形ABC的頂點C重合,當△DEF繞著點C旋轉時,較長的直角邊和斜邊始終與線段BA交于G,H兩點(G,H可以與B,A重合)
(1)如圖(1),當∠BCF等于多少度時,△BCG≌△ACH?請給予證明;
(2)如圖(2),設GH=x,陰影部分(兩三角形重疊部分)面積為y,寫出y與x的函數關系式;當x為何值時,y最大,并求出最大值.(結果保留根號)

查看答案和解析>>

科目: 來源:第2章《二次函數》中考題集(35):2.7 最大面積是多少(解析版) 題型:解答題

已知:如圖①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,點P由B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設運動的時間為t(s)(0<t<2),解答下列問題:
(1)當t為何值時,PQ∥BC;
(2)設△AQP的面積為y(cm2),求y與t之間的函數關系式;
(3)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;
(4)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時刻t,使四邊形PQP′C為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數》中考題集(35):2.7 最大面積是多少(解析版) 題型:解答題

如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B左側),與y軸交于點C,且當x=O和x=4時,y的值相等.直線y=4x-16與這條拋物線相交于兩點,其中一點的橫坐標是3,另一點是這條拋物線的頂點M.
(1)求這條拋物線的解析式;
(2)P為線段OM上一點,過點P作PQ⊥x軸于點Q.若點P在線段OM上運動(點P不與點O重合,但可以與點M重合),設OQ的長為t,四邊形PQCO的面積為S,求S與t之間的函數關系式及自變量t的取值范圍;
(3)隨著點P的運動,四邊形PQCO的面積S有最大值嗎?如果S有最大值,請求出S的最大值,并指出點Q的具體位置和四邊形PQCO的特殊形狀;如果S沒有最大值,請簡要說明理由;
(4)隨著點P的運動,是否存在t的某個值,能滿足PO=OC?如果存在,請求出t的值.

查看答案和解析>>

科目: 來源:第2章《二次函數》中考題集(35):2.7 最大面積是多少(解析版) 題型:解答題

如圖:拋物線經過A(-3,0)、B(0,4)、C(4,0)三點.
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點M,使MQ+MC有最小值?若存在,請求出點M的坐標;若不存在,請說明理由.(注:拋物線y=ax2+bx+c的對稱軸為x=-

查看答案和解析>>

科目: 來源:第2章《二次函數》中考題集(35):2.7 最大面積是多少(解析版) 題型:解答題

如圖,拋物線c1:y=x2-2x-3與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C.點P為線段BC上一點,過點P作直線l⊥x軸于點F,交拋物線c1點E.
(1)求A、B、C三點的坐標;
(2)當點P在線段BC上運動時,求線段PE長的最大值;
(3)當PE為最大值時,把拋物線c1向右平移得到拋物線c2,拋物線c2與線段BE交于點M,若直線CM把△BCE的面積分為1:2兩部分,則拋物線c1應向右平移幾個單位長度可得到拋物線c2?

查看答案和解析>>

科目: 來源:第2章《二次函數》中考題集(35):2.7 最大面積是多少(解析版) 題型:解答題

如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,點D在AC上,CD=3厘米.點P、Q分別由A、C兩點同時出發(fā),點P沿AC方向向點C勻速移動,速度為每秒k厘米,行完AC全程用時8秒;點Q沿CB方向向點B勻速移動,速度為每秒1厘米.設運動的時間為x秒(0<x<8),△DCQ的面積為y1平方厘米,△PCQ的面積為y2平方厘米.
(1)求y1與x的函數關系,并在圖2中畫出y1的圖象;
(2)如圖2,y2的圖象是拋物線的一部分,其頂點坐標是(4,12),求點P的速度及AC的長;
(3)在圖2中,點G是x軸正半軸上一點0<OG<6,過G作EF垂直于x軸,分別交y1、y2的圖象于點E、F.
①說出線段EF的長在圖1中所表示的實際意義;
②當0<x<6時,求線段EF長的最大值.

查看答案和解析>>

同步練習冊答案