相關習題
 0  126477  126485  126491  126495  126501  126503  126507  126513  126515  126521  126527  126531  126533  126537  126543  126545  126551  126555  126557  126561  126563  126567  126569  126571  126572  126573  126575  126576  126577  126579  126581  126585  126587  126591  126593  126597  126603  126605  126611  126615  126617  126621  126627  126633  126635  126641  126645  126647  126653  126657  126663  126671  366461 

科目: 來源:第34章《二次函數(shù)》中考題集(39):34.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖1,B是長度為1的線段AE上任意一點,在AE的同一側分別作正方形ABCD和長方形BEFG,且EF=2BE.

(1)點B在何處時,正方形ABCD的面積與長方形BEFG的面積和最小,最小值為多少?
(2)若點C與點G重合,M為AB中點,N為EF中點,MN與BC交于點H(如圖2所示),將△OMA沿直線DM,△MNE沿直線MN分別向矩形AEFD內折疊,求四邊形DMNF未被兩個折疊三角形覆蓋的圖形面積.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(39):34.4 二次函數(shù)的應用(解析版) 題型:解答題

在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的動點(不與A,B重合),過M點作MN∥BC交AC于點N.以MN為直徑作⊙O,并在⊙O內作內接矩形AMPN.令AM=x.
(1)用含x的代數(shù)式表示△MNP的面積S;
(2)當x為何值時,⊙O與直線BC相切;
(3)在動點M的運動過程中,記△MNP與梯形BCNM重合的面積為y,試求y關于x的函數(shù)表達式,并求x為何值時,y的值最大,最大值是多少?

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(39):34.4 二次函數(shù)的應用(解析版) 題型:解答題

在直角坐標系xOy中,設點A(0,t),點Q(t,b)(t,b均為非零常數(shù)).平移二次函數(shù)y=-tx2的圖象,得到的拋物線F滿足兩個條件:①頂點為Q;②與x軸相交于B,C兩點(|OB|<|OC|).連接AB.
(1)是否存在這樣的拋物線F,使得|OA|2=|OB|•|OC|?請你作出判斷,并說明理由;
(2)如果AQ∥BC,且tan∠ABO=,求拋物線F對應的二次函數(shù)的解析式.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(39):34.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖,已知拋物線經過原點O和x軸上另一點A,它的對稱軸x=2與x軸交于點C,直線y=-2x-1經過拋物線上一點B(-2,m),且與y軸、直線x=2分別交于點D、E.
(1)求m的值及該拋物線對應的函數(shù)關系式;
(2)求證:①CB=CE;②D是BE的中點;
(3)若P(x,y)是該拋物線上的一個動點,是否存在這樣的點P,使得PB=PE?若存在,試求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(39):34.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖,P是邊長為1的正方形ABCD對角線AC上一動點(P與A、C不重合),點E在線段BC上,且PE=PB.
(1)求證:①PE=PD;②PE⊥PD;
(2)設AP=x,△PBE的面積為y.
①求出y關于x的函數(shù)關系式,并寫出x的取值范圍;
②當x取何值時,y取得最大值,并求出這個最大值.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(39):34.4 二次函數(shù)的應用(解析版) 題型:解答題

在矩形ABCD中,點E是AD邊上一點,連接BE,且∠ABE=30°,BE=DE,連接BD.點P從點E出發(fā)沿射線ED運動,過點P作PQ∥BD交直線BE于點Q.
(1)當點P在線段ED上時(如圖1),求證:BE=PD+PQ;
(2)若BC=6,設PQ長為x,以P、Q、D三點為頂點所構成的三角形面積為y,求y與x的函數(shù)關系式(不要求寫出自變量x的取值范圍);
(3)在②的條件下,當點P運動到線段ED的中點時,連接QC,過點P作PF⊥QC,垂足為F,PF交對角線BD于點G(如圖2),求線段PG的長.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(39):34.4 二次函數(shù)的應用(解析版) 題型:解答題

已知一元二次方程x2-4x-5=0的兩個實數(shù)根為x1、x2,且x1<x2.若x1、x2分別是拋物線y=-x2+bx+c與x軸的兩個交點A、B的橫坐標(如下圖所示).
(1)求該拋物線的解析式;
(2)設(1)中的拋物線與y軸的交點為C,拋物線的頂點為D,請直接寫出點C、D的坐標并求出四邊形ABDC的面積;
(3)是否存在直線y=kx(k>0)與線段BD相交且把四邊形ABDC的面積分為相等的兩部分?若存在,求出k的值;若不存在,請說明理由.
[注:拋物線y=ax2+bx+c(a≠0)的頂點坐標為()].

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(39):34.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖,已知拋物線y=x2+bx+c經過點(1,-5)和(-2,4)
(1)求這條拋物線的解析式;
(2)設此拋物線與直線y=x相交于點A,B(點B在點A的右側),平行于y軸的直線x=m(0<m<+1)與拋物線交于點M,與直線y=x交于點N,交x軸于點P,求線段MN的長(用含m的代數(shù)式表示);
(3)在條件(2)的情況下,連接OM、BM,是否存在m的值,使△BOM的面積S最大?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(40):34.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖,以矩形OABC的頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標系.已知OA=3,OC=2,點E是AB的中點,在OA上取一點D,將△BDA沿BD翻折,使點A落在BC邊上的點F處.
(1)直接寫出點E、F的坐標;
(2)設頂點為F的拋物線交y軸正半軸于點P,且以點E、F、P為頂點的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點M、N,使得四邊形MNFE的周長最。咳绻嬖,求出周長的最小值;如果不存在,請說明理由.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(40):34.4 二次函數(shù)的應用(解析版) 題型:解答題

(1)如圖,A1,A2,A3是拋物線y=x2圖象上的三點,若A1,A2,A3三點的橫坐標從左至右依次為1,2,3.求△A1A2A3的面積.
(2)若將(1)問中的拋物線改為y=x2-x+2和y=ax2+bx+c(a>0),其他條件不變,請分別直接寫出兩種情況下△A1A2A3的面積.
(3)現(xiàn)有一拋物線組:y1=x2-x;y2=x2-x;y3=x2-x;y4=x2-x;y5=x2-x;…依據(jù)變化規(guī)律,請你寫出拋物線組第n個式子yn的函數(shù)解析式;現(xiàn)在x軸上有三點A(1,0),B(2,0),C(3,0).經過A,B,C向x軸作垂線,分別交拋物線組y1,y2,y3,…,yn于A1,B1,C1;A2,B2,C2;A3,B3,C3;…;An,Bn,Cn.記為S1,為S2,…,為Sn,試求S1+S2+S3+…+S10的值.
(4)在(3)問條件下,當n>10時有Sn-10+Sn-9+Sn-8+…Sn的值不小于,請?zhí)角蟠藯l件下正整數(shù)n是否存在最大值?若存在,請求出此值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案