相關習題
 0  126517  126525  126531  126535  126541  126543  126547  126553  126555  126561  126567  126571  126573  126577  126583  126585  126591  126595  126597  126601  126603  126607  126609  126611  126612  126613  126615  126616  126617  126619  126621  126625  126627  126631  126633  126637  126643  126645  126651  126655  126657  126661  126667  126673  126675  126681  126685  126687  126693  126697  126703  126711  366461 

科目: 來源:第34章《二次函數》中考題集(23):34.4 二次函數的應用(解析版) 題型:解答題

某商品的進價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品的售價每上漲1元,則每個月少賣10件(每件售價不能高于65元).設每件商品的售價上漲x元(x為正整數),每個月的銷售利潤為y元.
(1)求y與x的函數關系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
(3)每件商品的售價定為多少元時,每個月的利潤恰為2200元?根據以上結論,請你直接寫出售價在什么范圍時,每個月的利潤不低于2200元?

查看答案和解析>>

科目: 來源:第34章《二次函數》中考題集(23):34.4 二次函數的應用(解析版) 題型:解答題

種植能手小李的實驗田可種植A種作物或B種作物(A、B兩種作物不能同時種植),原來的種植情況如表.通過參加農業(yè)科技培訓,小李提高了種植技術.現準備在原有的基礎上增種,以提高總產量.但根據科學種植的經驗,每增種1棵A種或B種作物,都會導致單棵作物平均產量減少0.2千克,而且每種作物的增種數量都不能超過原有數量的80%.設A種作物增種m棵,總產量為yA千克;B種作物增種n棵,總產量為yB千克.
種植品種
數量
A種作物B中作物
原種植量(棵)5060
原產量(千克/棵)3026
(1)A種作物增種m棵后,單棵平均產量為______千克;B種作物增種n棵后,單棵平均產量為______千克;
(2)求yA與m之間的函數關系式及yB與n之間的函數關系式;
(3)求提高種植技術后,小李增種何種作物可獲得最大總產量?最大總產量是多少千克?

查看答案和解析>>

科目: 來源:第34章《二次函數》中考題集(23):34.4 二次函數的應用(解析版) 題型:解答題

某批發(fā)市場批發(fā)甲、乙兩種水果,根據以往經驗和市場行情,預計夏季某一段時間內,甲種水果的銷售利潤y(萬元)與進貨量x(噸)近似滿足函數關系y=0.3x;乙種水果的銷售利潤y(萬元)與進貨量x(噸)近似滿足函數關系y=ax2+bx(其中a≠0,a,b為常數),且進貨量x為1噸時,銷售利潤y為1.4萬元;進貨量x為2噸時,銷售利潤y為2.6萬元.
(1)求y(萬元)與x(噸)之間的函數關系式.
(2)如果市場準備進甲、乙兩種水果共10噸,設乙種水果的進貨量為t噸,請你寫出這兩種水果所獲得的銷售利潤之和W(萬元)與t(噸)之間的函數關系式.并求出這兩種水果各進多少噸時獲得的銷售利潤之和最大,最大利潤是多少?

查看答案和解析>>

科目: 來源:第34章《二次函數》中考題集(23):34.4 二次函數的應用(解析版) 題型:解答題

為把產品打入國際市場,某企業(yè)決定從下面兩個投資方案中選擇一個進行投資生產.方案一:生產甲產品,每件產品成本為a萬美元(a為常數,且3<a<8),每件產品銷售價為10萬美元,每年最多可生產200件;方案二:生產乙產品,每件產品成本為8萬美元,每件產品銷售價為18萬美元,每年最多可生產120件.另外,年銷售x件乙產品時需上交0.05x2萬美元的特別關稅.在不考慮其它因素的情況下:
(1)分別寫出該企業(yè)兩個投資方案的年利潤y1、y2與相應生產件數x(x為正整數)之間的函數關系式,并指出自變量的取值范圍;
(2)分別求出這兩個投資方案的最大年利潤;
(3)如果你是企業(yè)決策者,為了獲得最大收益,你會選擇哪個投資方案?

查看答案和解析>>

科目: 來源:第34章《二次函數》中考題集(23):34.4 二次函數的應用(解析版) 題型:解答題

如圖,等腰梯形花圃ABCD的底邊AD靠墻,另三邊用長為40米的鐵欄桿圍成,設該花圃的腰AB的長為x米.
(1)請求出底邊BC的長(用含x的代數式表示);
(2)若∠BAD=60°,該花圃的面積為S米2
①求S與x之間的函數關系式(要指出自變量x的取值范圍),并求當S=93時x的值;
②如果墻長為24米,試問S有最大值還是最小值?這個值是多少?

查看答案和解析>>

科目: 來源:第34章《二次函數》中考題集(23):34.4 二次函數的應用(解析版) 題型:解答題

某水產品養(yǎng)殖企業(yè)為指導該企業(yè)某種水產品的養(yǎng)殖和銷售,對歷年市場行情和水產品養(yǎng)殖情況進行了調查.調查發(fā)現這種水產品的每千克售價y1(元)與銷售月份x(月)滿足關系式y(tǒng)=-x+36,而其每千克成本y2(元)與銷售月份x(月)滿足的函數關系如圖所示.
(1)試確定b、c的值;
(2)求出這種水產品每千克的利潤y(元)與銷售月份x(月)之間的函數關系式;
(3)“五•一”之前,幾月份出售這種水產品每千克的利潤最大?最大利潤是多少?

查看答案和解析>>

科目: 來源:第34章《二次函數》中考題集(23):34.4 二次函數的應用(解析版) 題型:解答題

凱里市某大型酒店有包房100間,在每天晚餐營業(yè)時間,每間包房收包房費100元時,包房便可全部租出;若每間包房收費提高20元,則減少10間包房租出,若每間包房收費再提高20元,則再減少10間包房租出,以每次提高20元的這種方法變化下去.
(1)設每間包房收費提高x(元),則每間包房的收入為y1(元),但會減少y2間包房租出,請分別寫出y1,y2與x之間的函數關系式.
(2)為了投資少而利潤大,每間包房提高x(元)后,設酒店老板每天晚餐包房總收入為y(元),請寫出y與x之間的函數關系式,求出每間包房每天晚餐應提高多少元可獲得最大包房費收入,并說明理由.

查看答案和解析>>

科目: 來源:第34章《二次函數》中考題集(23):34.4 二次函數的應用(解析版) 題型:解答題

徒駭河大橋是我市第一座特大型橋梁,大橋橋體造型新穎,氣勢恢宏,兩條拱肋如長虹臥波,極具時代氣息(如圖①).大橋為中承式懸索拱橋,大橋的主拱肋ACB是拋物線的一部分(如圖②),跨徑AB為100m,拱高OC為25m,拋物線頂點C到橋面的距離為17m.
(1)請建立適當的坐標系,求該拋物線所對應的函數關系式;
(2)七月份汛期來臨,河水水位上漲,假設水位比AB所在直線高出1.96m,這時位于水面上的拱肋的跨徑是多少?在不計橋面厚度的情況,一條高出水面4.6m的游船是否能夠順利通過大橋?

查看答案和解析>>

科目: 來源:第34章《二次函數》中考題集(23):34.4 二次函數的應用(解析版) 題型:解答題

如圖,某公路隧道橫截面為拋物線,其最大高度為6米,底部寬度OM為12米.現以O點為原點,OM所在直線為x軸建立直角坐標系.
(1)直接寫出點M及拋物線頂點P的坐標;
(2)求這條拋物線的解析式;
(3)若要搭建一個矩形“支撐架”AD-DC-CB,使C、D點在拋物線上,A、B點在地面OM上,則這個“支撐架”總長的最大值是多少?

查看答案和解析>>

科目: 來源:第34章《二次函數》中考題集(23):34.4 二次函數的應用(解析版) 題型:解答題

由于國家重點扶持節(jié)能環(huán)保產業(yè),某種節(jié)能產品的銷售市場逐漸回暖,某經銷商銷售這種產品,年初與生產廠家簽訂了一份進貨合同,約定一年內進價為0.1萬元/臺,并預付了5萬元押金.他計劃一年內要達到一定的銷售量,且完成此銷售量所用的進貨總金額加上押金控制在不低于34萬元,但不高于40萬元.若一年內該產品的售價y(萬元/臺)與月次x(1≤x≤12且為整數)滿足關系式:y=,一年后發(fā)現實際每月的銷售量p(臺)與月次x之間存在如圖所示的變化趨勢.
(1)直接寫出實際每月的銷售量p(臺)與月次x之間的函數關系式;
(2)求前三個月中每月的實際銷售利潤w(萬元)與月次x之間的函數關系式;
(3)試判斷全年哪一個月的售價最高,并指出最高售價;
(4)請通過計算說明他這一年是否完成了年初計劃的銷售量.

查看答案和解析>>

同步練習冊答案