相關(guān)習(xí)題
 0  127061  127069  127075  127079  127085  127087  127091  127097  127099  127105  127111  127115  127117  127121  127127  127129  127135  127139  127141  127145  127147  127151  127153  127155  127156  127157  127159  127160  127161  127163  127165  127169  127171  127175  127177  127181  127187  127189  127195  127199  127201  127205  127211  127217  127219  127225  127229  127231  127237  127241  127247  127255  366461 

科目: 來源:第2章《二次函數(shù)》中考題集(25):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

在2006年青島嶗山北宅櫻桃節(jié)前夕,某果品批發(fā)公司為指導(dǎo)今年的櫻桃銷售,對往年的市場銷售情況進(jìn)行了調(diào)查統(tǒng)計(jì),得到如下數(shù)據(jù):
銷售價 x(元/千克)25242322
銷售量 y(千克)2000250030003500
(1)在如圖的直角坐標(biāo)系內(nèi),作出各組有序數(shù)對(x,y)所對應(yīng)的點(diǎn).連接各點(diǎn)并觀察所得的圖形,判斷y與x之間的函數(shù)關(guān)系,并求出y與x之間的函數(shù)關(guān)系式;
(2)若櫻桃進(jìn)價為13元/千克,試求銷售利潤P(元)與銷售價x(元/千克)之間的函數(shù)關(guān)系式,并求出當(dāng)x取何值時,P的值最大.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(25):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

寧波市土地利用現(xiàn)狀通過國土資源部驗(yàn)收,我市在節(jié)約集約用地方面已走在全國前列.1996---2004年,市區(qū)建設(shè)用地總量從33萬畝增加到48萬畝,相應(yīng)的年GDP從295億元增加到985億.寧波市區(qū)年GDP y(億元)與建設(shè)用地總量x(萬畝)之間存在著如圖所示的一次函數(shù)關(guān)系.
(1)求y關(guān)于x的函數(shù)關(guān)系式.
(2)據(jù)調(diào)查2005年市區(qū)建設(shè)用地比2004年增加4萬畝,如果這些土地按以上函數(shù)關(guān)系式開發(fā)使用,那么2005年市區(qū)可以新增GDP多少億元?
(3)按以上函數(shù)關(guān)系式,我市年GDP每增加1億元,需增建設(shè)用地多少萬畝?(精確到0.001萬畝).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(25):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

南博汽車城銷售某種型號的汽車,每輛進(jìn)貨價為25萬元,市場調(diào)研表明:當(dāng)銷售價為29萬元時,平均每周能售出8輛,而當(dāng)銷售價每降低0.5萬元時,平均每周能多售出4輛.如果設(shè)每輛汽車降價x萬元,每輛汽車的銷售利潤為y萬元.(銷售利潤=銷售價-進(jìn)貨價)
(1)求y與x的函數(shù)關(guān)系式;在保證商家不虧本的前提下,寫出x的取值范圍;
(2)假設(shè)這種汽車平均每周的銷售利潤為z萬元,試寫出z與x之間的函數(shù)關(guān)系式;
(3)當(dāng)每輛汽車的定價為多少萬元時,平均每周的銷售利潤最大,最大利潤是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(25):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖所示,某建筑物有一拋物線形的大門,小強(qiáng)想知道這道門的高度.他先測出門的寬度AB=8m,然后用一根長為4m的小竹竿CD豎直地接觸地面和門的內(nèi)壁,并測得AC=1m.小強(qiáng)畫出了如圖的草圖,請你幫他算一算門的高度OE(精確到0.1m).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(25):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某產(chǎn)品每件的成本是120元,為了解市場規(guī)律,試銷階段按兩種方法進(jìn)行銷售,結(jié)果如下:
方案甲:保持每件150元的售價不變,此時日銷售量為50件;
x (元)130150160
y (件)705040
方案乙:不斷地調(diào)整售價,此時發(fā)現(xiàn)日銷售量y(件)是售價x(元)的一次函數(shù),且前三天的銷售情況如下表:
(1)如果方案乙中的第四天、第五天售價均為180元,那么前五天中,哪種方案的銷售總利潤大?
(2)分析兩種方案,為獲得最大日銷售利潤,每件產(chǎn)品的售價應(yīng)寫為多少元此時,最大日銷售利潤S是多少?(注:銷售利潤=銷售額-成本額,銷售額=售價×銷售量).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(25):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

通過實(shí)驗(yàn)研究,專家們發(fā)現(xiàn):初中學(xué)生聽課的注意力指標(biāo)數(shù)是隨著老師講課時間的變化而變化的,講課開始時,學(xué)生的興趣激增,中間有一段時間的興趣保持平穩(wěn)狀態(tài),隨后開始分散.學(xué)生注意力指標(biāo)數(shù)y隨時間x(分鐘)變化的函數(shù)圖象如圖所示(y越大表示注意力越集中).當(dāng)0≤x≤10時,圖象是拋物線的一部分,當(dāng)10≤x≤20和20≤x≤40時,圖象是線段.
(1)當(dāng)0≤x≤10時,求注意力指標(biāo)數(shù)y與時間x的函數(shù)關(guān)系式;
(2)一道數(shù)學(xué)綜合題,需要講解24分鐘.問老師能否經(jīng)過適當(dāng)安排,使學(xué)生聽這道題時,注意力的指標(biāo)數(shù)都不低于36?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(25):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某水果經(jīng)銷商上月份銷售一種新上市的水果,平均售價為10元/千克,月銷售量為1000千克.經(jīng)市場調(diào)查,若將該種水果價格調(diào)低至x元/千克,則本月份銷售量y(千克)與x(元/千克)之間滿足一次函數(shù)關(guān)系y=kx+b.且當(dāng)x=7時,y=2000;x=5時,y=4000.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)已知該種水果上月份的成本價為5元/千克,本月份的成本價為4元/千克,要使本月份銷售該種水果所獲利潤比上月份增加20%,同時又要讓顧客得到實(shí)惠,那么該種水果價格每千克應(yīng)調(diào)低至多少元?[利潤=售價-成本價].

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(25):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某公司試銷一種成本為30元/件的新產(chǎn)品,按規(guī)定試銷時的銷售單價不低于成本單價,又不高于80元/件,試銷中每天的銷售量y(件)與銷售單價x(元/件)滿足下表中的函數(shù)關(guān)系.
x(元/件)3540455055
y(件)550500450400350
(1)試求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)公司試銷該產(chǎn)品每天獲得的毛利潤為S(元),求S與x之間的函數(shù)表達(dá)式(毛利潤=銷售總價-成本總價);
(3)當(dāng)銷售單價定為多少時,該公司試銷這種產(chǎn)品每天獲得的毛利潤最大?最大毛利潤是多少?此時每天的銷售量是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(26):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

一家用電器開發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為18元,按定價40元出售,每月可銷售20萬件.為了增加銷量,公司決定采取降價的辦法,經(jīng)市場調(diào)研,每降價1元,月銷售量可增加2萬件.
(1)求出月銷售量y(萬件)與銷售單價x(元)之間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(2)求出月銷售利潤z(萬元)(利潤=售價-成本價)與銷售單價x(元)之間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(3)請你通過(2)中的函數(shù)關(guān)系式及其大致圖象幫助公司確定產(chǎn)品的銷售單價范圍,使月銷售利潤不低于480萬元.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(26):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖所示,有一座拋物線形拱橋,橋下面在正常水位AB時,寬20m,水位上升3m就達(dá)到警戒線CD,這時水面寬度為10m.
(1)在如圖的坐標(biāo)系中求拋物線的解析式;
(2)若洪水到來時,水位以每小時0.2m的速度上升,從警戒線開始,再持續(xù)多少小時才能到達(dá)拱橋頂?

查看答案和解析>>

同步練習(xí)冊答案