相關習題
 0  127069  127077  127083  127087  127093  127095  127099  127105  127107  127113  127119  127123  127125  127129  127135  127137  127143  127147  127149  127153  127155  127159  127161  127163  127164  127165  127167  127168  127169  127171  127173  127177  127179  127183  127185  127189  127195  127197  127203  127207  127209  127213  127219  127225  127227  127233  127237  127239  127245  127249  127255  127263  366461 

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.3 二次函數(shù)的應用(解析版) 題型:解答題

已知:關于x的方程(a+2)x2-2ax+a=0有兩個不相等的實數(shù)根x1和x2,并且拋物線y=x2-(2a+1)x+2a-5與x軸的兩個交點分別位于點(2,0)的兩旁.
(1)求實數(shù)a的取值范圍;
(2)當|x1|+|x2|=時,求a的值.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.3 二次函數(shù)的應用(解析版) 題型:解答題

(1)請在坐標系中畫出二次函數(shù)y=x2-2x的大致圖象;
(2)根據(jù)方程的根與函數(shù)圖象的關系,將方程x2-2x=1的根在圖上近似的表示出來(描點);
(3)觀察圖象,直接寫出方程x2-2x=1的根.(精確到0.1)

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.3 二次函數(shù)的應用(解析版) 題型:解答題

利用圖象解一元二次方程x2+x-3=0時,我們采用的一種方法是:在平面直角坐標系中畫出拋物線y=x2和直線y=-x+3,兩圖象交點的橫坐標就是該方程的解.
(1)填空:利用圖象解一元二次方程x2+x-3=0,也可以這樣求解:在平面直角坐標系中畫出拋物線y=______和直線y=-x,其交點的橫坐標就是該方程的解.
(2)已知函數(shù)y=-的圖象(如圖所示),利用圖象求方程-x+3=0的近似解.(結果保留兩個有效數(shù)字)

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.3 二次函數(shù)的應用(解析版) 題型:解答題

小明在復習數(shù)學知識時,針對“求一元二次方程的解”,整理了以下的幾種方法,請你按有關內容補充完整:
復習日記卡片
內容:一元二次方程解法歸納                                時間:2007年6月×日
舉例:求一元二次方程x2-x-1=0的兩個解
方法一:選擇合適的一種方法(公式法、配方法、分解因式法)求解
解方程:x2-x-1=0.
解:

方法二:利用二次函數(shù)圖象與坐標軸的交點求解如圖所示,把方程x2-x-1=0的解看成是二次函數(shù)y=______的圖象與x軸交點的橫坐標,即x1,x2就是方程的解.

方法三:利用兩個函數(shù)圖象的交點求解
(1)把方程x2-x-1=0的解看成是一個二次函數(shù)y=______的圖象與一個一次函數(shù)y=______圖象交點的橫坐標;
(2)畫出這兩個函數(shù)的圖象,用x1,x2在x軸上標出方程的解.


查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.3 二次函數(shù)的應用(解析版) 題型:解答題

利用圖象解一元二次方程x2-2x-1=0時,我們采用的一種方法是:在直角坐標系中畫出拋物線y=x2和直線y=2x+1,兩圖象交點的橫坐標就是該方程的解.
(1)請再給出一種利用圖象求方程x2-2x-1=0的解的方法;
(2)已知函數(shù)y=x3的圖象(如圖):求方程x3-x-2=0的解.(結果保留2個有效數(shù)字)

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.3 二次函數(shù)的應用(解析版) 題型:解答題

已知二次函數(shù)y=x2+px+q(p,q為常數(shù),△=p2-4q>0)的圖象與x軸相交于A(x1,0),B(x2,0)兩點,且A,B兩點間的距離為d,例如,通過研究其中一個函數(shù)y=x2-5x+6及圖象(如圖),可得出表中第2行的相關數(shù)據(jù).
(1)在表內的空格中填上正確的數(shù);
(2)根據(jù)上述表內d與△的值,猜想它們之間有什么關系?再舉一個符合條件的二次函數(shù),驗證你的猜想;
(3)對于函數(shù)y=x2+px+q(p,q為常數(shù),△=p2-4q>0)證明你的猜想.聰明的小伙伴:你能再給出一種不同于(3)的正確證明嗎?我們將對你的出色表現(xiàn)另外獎勵3分.
y=x2+px+q x1x2 
y=x2-5x+6 -5 6 1 1
y=x2--      
y=x2+x-2  -2 -2  3


查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.3 二次函數(shù)的應用(解析版) 題型:解答題

閱讀材料,解答問題.
利用圖象法解一元二次不等式:x2-2x-3>0.
解:設y=x2-2x-3,則y是x的二次函數(shù).∵a=1>0,∴拋物線開口向上.
又∵當y=0時,x2-2x-3=0,解得x1=-1,x2=3.
∴由此得拋物線y=x2-2x-3的大致圖象如圖所示.
觀察函數(shù)圖象可知:當x<-1或x>3時,y>0.
∴x2-2x-3>0的解集是:x<-1或x>3.
(1)觀察圖象,直接寫出一元二次不等式:x2-2x-3<0的解集是______;
(2)仿照上例,用圖象法解一元二次不等式:x2-1>0.(大致圖象畫在答題卡上)

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.3 二次函數(shù)的應用(解析版) 題型:解答題

(Ⅰ)請將下表補充完整;
判別式
△=b2-4ac
△>0△=0△<0
二次函數(shù)
y=ax2+bx+c(a>0)的圖象
一元二次方程
ax2+bx+c=0(a>0)的根
有兩個不相等的實數(shù)根
x1=,
x2=
(x1<x2
有兩個相等的實數(shù)根
x1=x2=-
無實數(shù)根
使y>0的x的取值范圍x<x1或x>x2
不等式ax2+bx+c>0(a>0)的解集x≠-
不等式ax2+bx+c<0(a>0)的解集
(Ⅱ)利用你在填上表時獲得的結論,解不等式-x2-2x+3<0;
(Ⅲ)利用你在填上表時獲得的結論,試寫出一個解集為全體實數(shù)的一元二次不等式;
(Ⅳ)試寫出利用你在填上表時獲得的結論解一元二次不等式ax2+bx+c>0(a≠0)時的解題步驟.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.3 二次函數(shù)的應用(解析版) 題型:解答題

今年我國多個省市遭受嚴重干旱,受旱災的影響,4月份,我市某蔬菜價格呈上升趨勢,其前四周每周的平均銷售價格變化如下表:
周數(shù)x1234
價格y(元/kg)22.22.42.6
進入5月,由于本地蔬菜的上市,此種蔬菜的平均銷售價格y(元/千克)從5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y與周數(shù)x的變化情況滿足二次函數(shù)y=-x2+bx+c.
(1)請觀察題中的表格,用所學過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關知識直接寫出4月份y與x的函數(shù)關系式,并求出5月份y與x的函數(shù)關系式;
(2)若4月份此種蔬菜的進價m(元/千克)與周數(shù)x所滿足的函數(shù)關系為m=x+1.2,5月份此種蔬菜的進價m(元/千克)與周數(shù)x所滿足的函數(shù)關系為m=x+2.試問4月份與5月份分別在哪一周銷售此種蔬菜一千克的利潤最大?且最大利潤分別是多少?
(3)若5月份的第2周共銷售100噸此種蔬菜.從5月份的第3周起,由于受暴雨的影響,此種蔬菜的可供銷量將在第2周銷量的基礎上每周減少a%,政府為穩(wěn)定蔬菜價格,從外地調運2噸此種蔬菜,剛好滿足本地市民的需要,且使此種蔬菜的銷售價格比第2周僅上漲0.8a%.若在這一舉措下,此種蔬菜在第3周的總銷售額與第2周剛好持平,請你參考以下數(shù)據(jù),通過計算估算出a的整數(shù)值.
(參考數(shù)據(jù):372=1369,382=1444,392=1521,402=1600,412=1681)

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.3 二次函數(shù)的應用(解析版) 題型:解答題

如圖1,某灌溉設備的噴頭B高出地面1.25m,噴出的拋物線形水流在與噴頭底部A的距離為1m處達到距地面最大高度2.25m,試在恰當?shù)闹苯亲鴺讼抵星蟪雠c該拋物線水流對應的二次函數(shù)關系式.
學生小龍在解答圖1所示的問題時,具體解答如下:
①以水流的最高點為原點,過原點的水平線為橫軸,過原點的鉛垂線為縱軸,建立如圖
2所示的平面直角坐標系;
②設拋物線水流對應的二次函數(shù)關系式為y=ax2
③根據(jù)題意可得B點與x軸的距離為1m,故B點的坐標為(-1,1);
④代入y=ax2得-1=a•1,所以a=-1;
⑤所以拋物線水流對應的二次函數(shù)關系式為y=-x2
數(shù)學老師看了小龍的解題過程說:“小龍的解答是錯誤的”.
(1)請指出小龍的解答從第______步開始出現(xiàn)錯誤,錯誤的原因是什么?
(2)請你寫出完整的正確解答過程.

查看答案和解析>>

同步練習冊答案