相關(guān)習(xí)題
 0  127145  127153  127159  127163  127169  127171  127175  127181  127183  127189  127195  127199  127201  127205  127211  127213  127219  127223  127225  127229  127231  127235  127237  127239  127240  127241  127243  127244  127245  127247  127249  127253  127255  127259  127261  127265  127271  127273  127279  127283  127285  127289  127295  127301  127303  127309  127313  127315  127321  127325  127331  127339  366461 

科目: 來源:第1章《反比例函數(shù)》?碱}集(15):1.3 實(shí)際生活中的反比例函數(shù)(解析版) 題型:解答題

為了預(yù)防流感,某學(xué)校在休息天用藥熏消毒法對教室進(jìn)行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比例;藥物釋放完畢后,y與x成反比例,如圖所示.根據(jù)圖中提供的信息,解答下列問題:
(1)寫出從藥物釋放開始,y與x之間的兩個函數(shù)關(guān)系式及相應(yīng)的自變量取值范圍;
(2)據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到0.45毫克以下時,學(xué)生方可進(jìn)入教室,那么從藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能進(jìn)入教室?

查看答案和解析>>

科目: 來源:第1章《反比例函數(shù)》?碱}集(15):1.3 實(shí)際生活中的反比例函數(shù)(解析版) 題型:解答題

如圖,奧運(yùn)圣火抵達(dá)某市奧林匹克廣場后,沿圖中直角坐標(biāo)系中的一段反比例函數(shù)圖象傳遞.動點(diǎn)T(m,n)表示火炬位置,火炬從離北京路10米處的M點(diǎn)開始傳遞,到離北京路1000米的N點(diǎn)時傳遞活動結(jié)束.迎圣火臨時指揮部設(shè)在坐標(biāo)原點(diǎn)O(北京路與奧運(yùn)路的十字路口),OATB為少先隊(duì)員鮮花方陣,方陣始終保持矩形形狀且面積恒為10000平方米(路線寬度均不計(jì)).
(1)求圖中反比例函數(shù)的關(guān)系式(不需寫出自變量的取值范圍);
(2)當(dāng)鮮花方陣的周長為500米時,確定此時火炬的位置(用坐標(biāo)表示);
(3)設(shè)t=m-n,用含t的代數(shù)式表示火炬到指揮部的距離;當(dāng)火炬離指揮部最近時,確定此時火炬的位置(用坐標(biāo)表示).

查看答案和解析>>

科目: 來源:第1章《反比例函數(shù)》常考題集(16):1.3 實(shí)際生活中的反比例函數(shù)(解析版) 題型:解答題

為了預(yù)防流感,某學(xué)校在休息天用藥熏消毒法對教室進(jìn)行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,y與t的函數(shù)關(guān)系式為y=(a為常數(shù)),如圖所示.據(jù)圖中提供的信息,解答下列問題:
(1)寫出從藥物釋放開始,y與t之間的兩個函數(shù)關(guān)系式及相應(yīng)的自變量的取值范圍;
(2)據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時,學(xué)生方可進(jìn)入教室,那么從藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能進(jìn)入教室?

查看答案和解析>>

科目: 來源:第1章《反比例函數(shù)》?碱}集(16):1.3 實(shí)際生活中的反比例函數(shù)(解析版) 題型:解答題

如圖所示,小華設(shè)計(jì)了一個探究杠桿平衡條件的實(shí)驗(yàn):在一根勻質(zhì)的木桿中點(diǎn)O左側(cè)固定位置B處懸掛重物A,在中點(diǎn)O右側(cè)用一個彈簧秤向下拉,改變彈簧秤與點(diǎn)O的距離x(cm),觀察彈簧秤的示數(shù)y(N)的變化情況.實(shí)驗(yàn)數(shù)據(jù)記錄如下:
x(cm)…10152025 30…
y(N)…30201512 10…
(1)把上表中x,y的各組對應(yīng)值作為點(diǎn)的坐標(biāo),在坐標(biāo)系中描出相應(yīng)的點(diǎn),用平滑曲線連接這些點(diǎn)并觀察所得的圖象,猜測y(N)與x(cm)之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當(dāng)彈簧秤的示數(shù)為24N時,彈簧秤與O點(diǎn)的距離是多少cm?隨著彈簧秤與O點(diǎn)的距離不斷減小,彈簧秤上的示數(shù)將發(fā)生怎樣的變化?

查看答案和解析>>

科目: 來源:第1章《反比例函數(shù)》?碱}集(16):1.3 實(shí)際生活中的反比例函數(shù)(解析版) 題型:解答題

某校科技小組進(jìn)行野外考察,途中遇到一片十幾米寬的爛泥濕地.為了安全、迅速通過這片濕地,他們沿著前進(jìn)路線鋪了若干塊木塊,構(gòu)筑成一條臨時近道.木板對地面的壓強(qiáng)P(Pa)是木板面積S(m2)的反比例函數(shù),其圖象如下圖所示.
(1)請直接寫出這一函數(shù)表達(dá)式和自變量取值范圍;
(2)當(dāng)木板面積為0.2m2時,壓強(qiáng)是多少?
(3)如果要求壓強(qiáng)不超過6000Pa,木板的面積至少要多大?

查看答案和解析>>

科目: 來源:第1章《反比例函數(shù)》常考題集(16):1.3 實(shí)際生活中的反比例函數(shù)(解析版) 題型:解答題

某人采用藥熏法進(jìn)行室內(nèi)消毒,已知藥物燃燒時室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比例,藥物燃燒后,y與x成反比例(如圖所示),現(xiàn)測得藥物10分鐘燃完,此時室內(nèi)空氣中每立方米的含藥量為8毫克,請根據(jù)題中所提供的信息,解答下列問題:
(1)藥物燃燒時,y與x的函數(shù)關(guān)系式為______,自變量x的取值范圍是______;藥物燃燒后,y與x的函數(shù)關(guān)系式為______.
(2)研究表明,當(dāng)空氣中每立方米的含藥量低于2毫克時,人方可進(jìn)入室內(nèi),那么從消毒開始,至少需要經(jīng)過______分鐘后,人才可以回到室內(nèi).
(3)當(dāng)空氣中每立方米的含藥量不低于5毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效,為什么?

查看答案和解析>>

科目: 來源:第1章《反比例函數(shù)》常考題集(16):1.3 實(shí)際生活中的反比例函數(shù)(解析版) 題型:解答題

某廠從2005年起開始投入技術(shù)改進(jìn)資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的生產(chǎn)成本不斷降低,具體數(shù)據(jù)如下表:
年    度2006200720082009
投入技改資金x(萬元)2.5344.5
產(chǎn)品成本y(萬元/件)7.264.54
(1)請你認(rèn)真分析表中數(shù)據(jù),從你所學(xué)習(xí)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示其變化規(guī)律,說明確定是這種函數(shù)而不是其它函數(shù)的理由,并求出它的解析式;
(2)按照這種變化規(guī)律,若2010年已投入技改資金5萬元.
①預(yù)計(jì)生產(chǎn)成本每件比2009年降低多少萬元?
②如果打算在2009年把每件產(chǎn)品成本降低到3.2萬元,則還需投入技改資金多少萬元?(結(jié)果精確到0.01萬元)

查看答案和解析>>

科目: 來源:第1章《反比例函數(shù)》?碱}集(16):1.3 實(shí)際生活中的反比例函數(shù)(解析版) 題型:解答題

為預(yù)防“流感“,某單位對辦公室進(jìn)行“藥熏消毒”.已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與燃燒時間x(分鐘)成正比例;燃燒后,y與x成反比例(如圖所示).現(xiàn)測得藥物8分鐘燃畢,此時辦公室內(nèi)每立方米空氣中含藥量為6毫克,據(jù)以上信息:
(1)分別求藥物燃燒時和燃燒后,y與x的函數(shù)關(guān)系式;
(2)研究表明,當(dāng)空氣中含藥量低于1.6毫克/立方米時,工作人員才能回到辦公室,那么從消毒開始,經(jīng)多長時間,工作人員才可以回到辦公室?

查看答案和解析>>

科目: 來源:第1章《反比例函數(shù)》?碱}集(16):1.3 實(shí)際生活中的反比例函數(shù)(解析版) 題型:解答題

制作一種產(chǎn)品,需先將材料加熱達(dá)到60℃后,再進(jìn)行操作.設(shè)該材料溫度為y(℃),從加熱開始計(jì)算的時間為x(分鐘).據(jù)了解,該材料加熱時,溫度y與時間x成一次函數(shù)關(guān)系;停止加熱進(jìn)行操作時,溫度y與時間x成反比例關(guān)系(如圖).已知該材料在操作加工前的溫度為15℃,加熱5分鐘后溫度達(dá)到60℃.
(1)分別求出將材料加熱和停止加熱進(jìn)行操作時,y與x的函數(shù)關(guān)系式;
(2)根據(jù)工藝要求,當(dāng)材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?

查看答案和解析>>

科目: 來源:第1章《反比例函數(shù)》?碱}集(16):1.3 實(shí)際生活中的反比例函數(shù)(解析版) 題型:解答題

你吃過拉面嗎?實(shí)際上在做拉面的過程中就滲透著數(shù)學(xué)知識:一定體積的面團(tuán)做成拉面,面條的總長度y(m)是面條的粗細(xì)(橫截面積)s(mm2)的反比例函數(shù),其圖象如圖所示.
(1)寫出y與s的函數(shù)關(guān)系式;
(2)求當(dāng)面條粗1.6mm2時,面條的總長度是多少米?

查看答案和解析>>

同步練習(xí)冊答案