相關習題
 0  127503  127511  127517  127521  127527  127529  127533  127539  127541  127547  127553  127557  127559  127563  127569  127571  127577  127581  127583  127587  127589  127593  127595  127597  127598  127599  127601  127602  127603  127605  127607  127611  127613  127617  127619  127623  127629  127631  127637  127641  127643  127647  127653  127659  127661  127667  127671  127673  127679  127683  127689  127697  366461 

科目: 來源:第6章《二次函數》中考題集(37):6.4 二次函數的應用(解析版) 題型:解答題

已知拋物線y=-ax2+2ax+b與x軸的一個交點為A(-1,0),與y軸的正半軸交于點C.
(1)直接寫出拋物線的對稱軸,及拋物線與x軸的另一個交點B的坐標;
(2)當點C在以AB為直徑的⊙P上時,求拋物線的解析式;
(3)坐標平面內是否存在點M,使得以點M和(2)中拋物線上的三點A、B、C為頂點的四邊形是平行四邊形?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第6章《二次函數》中考題集(37):6.4 二次函數的應用(解析版) 題型:解答題

如圖所示,在平面直角坐標系中,矩形ABOC的邊BO在x軸的負半軸上,邊OC在y軸的正半軸上,且AB=1,OB=,矩形ABOC繞點O按順時針方向旋轉60°后得到矩形EFOD.點A的對應點為點E,點B的對應點為點F,點C的對應點為點D,拋物線y=ax2+bx+c過點A,E,D.
(1)判斷點E是否在y軸上,并說明理由;
(2)求拋物線的函數表達式;
(3)在x軸的上方是否存在點P,點Q,使以點O,B,P,Q為頂點的平行四邊形的面積是矩形ABOC面積的2倍,且點P在拋物線上?若存在,請求出點P,點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第6章《二次函數》中考題集(38):6.4 二次函數的應用(解析版) 題型:解答題

定義[p,q]為一次函數y=px+q的特征數.
(1)若特征數是[2,k-2]的一次函數為正比例函數,求k的值;
(2)設點A,B分別為拋物線y=(x+m)(x-2)與x,y軸的交點,其中m>0,且△OAB的面積為4,O為原點,求圖象過A,B兩點的一次函數的特征數.

查看答案和解析>>

科目: 來源:第6章《二次函數》中考題集(38):6.4 二次函數的應用(解析版) 題型:解答題

如圖,將含30°角的直角三角板ABC(∠B=30°)繞其直角頂點A逆時針旋轉α解(0°<α<90°),得到Rt△ADE,AD與BC相交于點M,過點M作MN∥DE交AE于點N,連接NC.設BC=4,BM=x,△MNC的面積為S△MNC,△ABC的面積為S△ABC
(1)求證:△MNC是直角三角形;
(2)試求用x表示S△MNC的函數關系式,并寫出x的取值范圍;
(3)以點N為圓心,NC為半徑作⊙N,
①當直線AD與⊙N相切時,試探求S△MNC與S△ABC之間的關系;
②當S△MNC=S△ABC時,試判斷直線AD與⊙N的位置關系,并說明理由.

查看答案和解析>>

科目: 來源:第6章《二次函數》中考題集(38):6.4 二次函數的應用(解析版) 題型:解答題

正方形ABCD的邊長為2,E是射線CD上的動點(不與點D重合),直線AE交直線BC于點G,∠BAE的平分線交射線BC于點O.
(1)如圖,當CE=時,求線段BG的長;
(2)當點O在線段BC上時,設,BO=y,求y關于x的函數解析式;
(3)當CE=2ED時,求線段BO的長.

查看答案和解析>>

科目: 來源:第6章《二次函數》中考題集(38):6.4 二次函數的應用(解析版) 題型:解答題

如圖,在平面直角坐標系中,點O為坐標原點,以點A(0,-3)為圓心,5為半徑作圓A,交x軸于B,C兩點,交y軸于點D,E兩點.
(1)求點B,C,D的坐標;
(2)如果一個二次函數圖象經過B,C,D三點,求這個二次函數解析式;
(3)P為x軸正半軸上的一點,過點P作與圓A相離并且與x軸垂直的直線,交上述二次函數圖象于點F,當△CPF中一個內角的正切之為時,求點P的坐標.

查看答案和解析>>

科目: 來源:第6章《二次函數》中考題集(38):6.4 二次函數的應用(解析版) 題型:解答題

如圖,已知直線l1的解析式為y=3x+6,直線l1與x軸,y軸分別相交于A,B兩點,直線l2經過B,C兩點,點C的坐標為(8,0),又已知點P在x軸上從點A向點C移動,點Q在直線l2從點C向點B移動.點P,Q同時出發(fā),且移動的速度都為每秒1個單位長度,設移動時間為t秒(1<t<10).
(1)求直線l2的解析式;
(2)設△PCQ的面積為S,請求出S關于t的函數關系式;
(3)試探究:當t為何值時,△PCQ為等腰三角形?

查看答案和解析>>

科目: 來源:第6章《二次函數》中考題集(38):6.4 二次函數的應用(解析版) 題型:解答題

如圖,拋物線y=x2+bx-2與x軸交于A、B兩點,與y軸交于C點,且A(-1,0).
(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,證明你的結論;
(3)點M(m,0)是x軸上的一個動點,當MC+MD的值最小時,求m的值.
[注:拋物線y=ax2+bx+c的頂點坐標為(-,).].

查看答案和解析>>

科目: 來源:第6章《二次函數》中考題集(38):6.4 二次函數的應用(解析版) 題型:解答題

一條拋物線y=x2+mx+n經過點(0,3)與(4,3).
(1)求這條拋物線的解析式,并寫出它的頂點坐標;
(2)現有一半徑為1,圓心P在拋物線上運動的動圓,當⊙P與坐標軸相切時,求圓心P的坐標;
(3)⊙P能與兩坐標軸都相切嗎?如果不能,試通過上下平移拋物線y=x2+mx+n,使⊙P與兩坐標軸都相切.(要說明平移方法)

查看答案和解析>>

科目: 來源:第6章《二次函數》中考題集(38):6.4 二次函數的應用(解析版) 題型:解答題

如圖:已知在等腰直角三角形ABC中,∠C=90°,AC=BC=2,將一個含30°的直角三角形DEF的最小內角所在的頂點D與直角三角形ABC的頂點C重合,當△DEF繞著點C旋轉時,較長的直角邊和斜邊始終與線段BA交于G,H兩點(G,H可以與B,A重合)
(1)如圖(1),當∠BCF等于多少度時,△BCG≌△ACH?請給予證明;
(2)如圖(2),設GH=x,陰影部分(兩三角形重疊部分)面積為y,寫出y與x的函數關系式;當x為何值時,y最大,并求出最大值.(結果保留根號)

查看答案和解析>>

同步練習冊答案