相關(guān)習(xí)題
 0  128062  128070  128076  128080  128086  128088  128092  128098  128100  128106  128112  128116  128118  128122  128128  128130  128136  128140  128142  128146  128148  128152  128154  128156  128157  128158  128160  128161  128162  128164  128166  128170  128172  128176  128178  128182  128188  128190  128196  128200  128202  128206  128212  128218  128220  128226  128230  128232  128238  128242  128248  128256  366461 

科目: 來源:第27章《二次函數(shù)》中考題集(23):27.3 實(shí)踐與探索(解析版) 題型:解答題

某工廠要趕制一批抗震救災(zāi)用的大型活動(dòng)板房.如圖,板房一面的形狀是由矩形和拋物線的一部分組成,矩形長(zhǎng)為12m,拋物線拱高為5.6m.
(1)在如圖所示的平面直角坐標(biāo)系中,求拋物線的表達(dá)式.
(2)現(xiàn)需在拋物線AOB的區(qū)域內(nèi)安裝幾扇窗戶,窗戶的底邊在AB上,每扇窗戶寬1.5m,高1.6m,相鄰窗戶之間的間距均為0.8m,左右兩邊窗戶的窗角所在的點(diǎn)到拋物線的水平距離至少為0.8m.請(qǐng)計(jì)算最多可安裝幾扇這樣的窗戶?

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(23):27.3 實(shí)踐與探索(解析版) 題型:解答題

現(xiàn)有一塊矩形場(chǎng)地,如圖所示,長(zhǎng)為40m,寬為30m,要將這塊地劃分為四塊分別種植:A.蘭花;B.菊花;C.月季;D.牽;ǎ
(1)求出這塊場(chǎng)地中種植B菊花的面積y與B場(chǎng)地的長(zhǎng)x之間的函數(shù)關(guān)系式;求出此函數(shù)與x軸的交點(diǎn)坐標(biāo),并寫出自變量的取值范圍;
(2)當(dāng)x是多少時(shí),種植菊花的面積最大,最大面積是多少?請(qǐng)?jiān)诟顸c(diǎn)圖中畫出此函數(shù)圖象的草圖(提示:找三點(diǎn)描出圖象即可).

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(23):27.3 實(shí)踐與探索(解析版) 題型:解答題

某商品的進(jìn)價(jià)為每件30元,現(xiàn)在的售價(jià)為每件40元,每星期可賣出150件.市場(chǎng)調(diào)查反映:如果每件的售價(jià)每漲1元(售價(jià)每件不能高于45元),那么每星期少賣10件.設(shè)每件漲價(jià)x元(x為非負(fù)整數(shù)),每星期的銷量為y件.
(1)求y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)如何定價(jià)才能使每星期的利潤(rùn)最大且每星期的銷量較大?每星期的最大利潤(rùn)是多少?

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(23):27.3 實(shí)踐與探索(解析版) 題型:解答題

一快餐店試銷某種套餐,試銷一段時(shí)間后發(fā)現(xiàn),每份套餐的成本為5元,該店每天固定支出費(fèi)用為600元(不含套餐成本).若每份售價(jià)不超過10元,每天可銷售400份;若每份售價(jià)超過10元,每提高1元,每天的銷售量就減少40份.為了便于結(jié)算,每份套餐的售價(jià)x(元)取整數(shù),用y(元)表示該店日凈收入.(日凈收入=每天的銷售額一套餐成本-每天固定支出)
(1)求y與x的函數(shù)關(guān)系式;
(2)若每份套餐售價(jià)不超過10元,要使該店日凈收入不少于800元,那么每份售價(jià)最少不低于多少元;
(3)該店既要吸引顧客,使每天銷售量較大,又要有較高的日凈收入.按此要求,每份套餐的售價(jià)應(yīng)定為多少元?此時(shí)日凈收入為多少?

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(23):27.3 實(shí)踐與探索(解析版) 題型:解答題

某市種植某種綠色蔬菜,全部用來出口.為了擴(kuò)大出口規(guī)模,該市決定對(duì)這種蔬菜的種植實(shí)行政府補(bǔ)貼,規(guī)定每種植-畝這種蔬菜一次性補(bǔ)貼菜農(nóng)若干元.經(jīng)調(diào)查,種植畝數(shù)y(畝)與補(bǔ)貼數(shù)額x(元)之間大致滿足如圖1所示的一次函數(shù)關(guān)系.隨著補(bǔ)貼數(shù)額x的不斷增大,出口量也不斷增加,但每畝蔬菜的收益z(元)會(huì)相應(yīng)降低,且z與x之間也大致滿足如圖2所示的一次函數(shù)關(guān)系.
(1)在政府未出臺(tái)補(bǔ)貼措施前,該市種植這種蔬菜的總收益額為多少?
(2)分別求出政府補(bǔ)貼政策實(shí)施后,種植畝數(shù)y和每畝蔬菜的收益z與政府補(bǔ)貼數(shù)額x之間的函數(shù)關(guān)系式;
(3)要使全市這種蔬菜的總收益w(元)最大,政府應(yīng)將每畝補(bǔ)貼數(shù)額x定為多少?并求出總收益w的最大值.

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(23):27.3 實(shí)踐與探索(解析版) 題型:解答題

某生物科技發(fā)展公司投資2000萬元,研制出一種綠色保健食品.已知該產(chǎn)品的成本為40元/件,試銷時(shí),售價(jià)不低于成本價(jià),又不高于180元/件.經(jīng)市場(chǎng)調(diào)查知,年銷售量y(萬件)與銷售單位x(元/件)的關(guān)系滿足下表所示的規(guī)律.
銷售單價(jià)x(元/件)6065708085
年銷售量y(萬件)140135130120115
(1)y與x之間的函數(shù)關(guān)系式是______,自變量x的取值范圍為______;
(2)經(jīng)測(cè)算:年銷售量不低于90萬件時(shí),每件產(chǎn)品成本降低2元,設(shè)銷售該產(chǎn)品年獲利潤(rùn)為W(萬元)(W=年銷售額-成本-投資),求出年銷售量低于90萬件和不低于90萬件時(shí),W與x之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,當(dāng)銷售單位定為多少時(shí),公司銷售這種產(chǎn)品年獲利潤(rùn)最大?最大利潤(rùn)為多少萬元?

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(23):27.3 實(shí)踐與探索(解析版) 題型:解答題

某賓館有客房90間,當(dāng)每間客房的定價(jià)為每天140元時(shí),客房會(huì)全部住滿.當(dāng)每間客房每天的定價(jià)每漲10元時(shí),就會(huì)有5間客房空閑.如果旅客居住客房,賓館需對(duì)每間客房每天支出60元的各種費(fèi)用.
(1)請(qǐng)寫出該賓館每天的利潤(rùn)y(元)與每間客房漲價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)設(shè)某天的利潤(rùn)為8000元,8000元的利潤(rùn)是否為該天的最大利潤(rùn)?如果是,請(qǐng)說明理由;如果不是,請(qǐng)求出最大利潤(rùn),并指出此時(shí)客房定價(jià)應(yīng)為多少元?
(3)請(qǐng)回答客房定價(jià)在什么范圍內(nèi)賓館就可獲得利潤(rùn)?

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(23):27.3 實(shí)踐與探索(解析版) 題型:解答題

某產(chǎn)品第一季度每件成本為50元,第二三季度每件產(chǎn)品平均降低成本的百分率為x.
(1)衣用含x的代數(shù)式表示第二季度每件產(chǎn)品的成本;
(2)如果第三季度每件產(chǎn)品成本比第一季度少9.5元,試求x的值;
(3)該產(chǎn)品第二季度每件的銷售價(jià)為60元,第三季度每件的銷售價(jià)比第二季度有所下降,若下降的百分率與第二、三季度每件產(chǎn)品平均降低成本的百分率相同,且第三季度每件產(chǎn)品的銷售價(jià)不低于48元,設(shè)第三季度每件產(chǎn)品獲得的利潤(rùn)為y元,試求y與x的函數(shù)關(guān)系式,并利用函數(shù)圖象與性質(zhì)求y的最大值.(注:利潤(rùn)=銷售價(jià)-成本)

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(23):27.3 實(shí)踐與探索(解析版) 題型:解答題

王亮同學(xué)善于改進(jìn)學(xué)習(xí)方法,他發(fā)現(xiàn)對(duì)解題過程進(jìn)行回顧反思,效果會(huì)更好.某一天他利用30分鐘時(shí)間進(jìn)行自主學(xué)習(xí).假設(shè)他用于解題的時(shí)間x(單位:分鐘)與學(xué)習(xí)收益量y的關(guān)系如圖甲所示,用于回顧反思的時(shí)間x(單位:分鐘)與學(xué)習(xí)收益量y的關(guān)系如圖乙所示(其中OA是拋物線的一部分,A為拋物線的頂點(diǎn)),且用于回顧反思的時(shí)間不超過用于解題的時(shí)間.

(1)求王亮解題的學(xué)習(xí)收益量y與用于解題的時(shí)間x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求王亮回顧反思的學(xué)習(xí)收益量y與用于回顧反思的時(shí)間x之間的函數(shù)關(guān)系式;
(3)王亮如何分配解題和回顧反思的時(shí)間,才能使這30分鐘的學(xué)習(xí)收益總量最大?
(學(xué)習(xí)收益總量=解題的學(xué)習(xí)收益量+回顧反思的學(xué)習(xí)收益量)

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(23):27.3 實(shí)踐與探索(解析版) 題型:解答題

某服裝公司試銷一種成本為每件50元的T恤衫,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),又不高于每件70元,試銷中銷售量y(件)與銷售單價(jià)x(元)的關(guān)系可以近似的看作一次函數(shù)(如圖).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)公司獲得的總利潤(rùn)(總利潤(rùn)=總銷售額-總成本)為P元,求P與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當(dāng)x取何值時(shí),P的值最大,最大值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案