相關習題
 0  128374  128382  128388  128392  128398  128400  128404  128410  128412  128418  128424  128428  128430  128434  128440  128442  128448  128452  128454  128458  128460  128464  128466  128468  128469  128470  128472  128473  128474  128476  128478  128482  128484  128488  128490  128494  128500  128502  128508  128512  128514  128518  128524  128530  128532  128538  128542  128544  128550  128554  128560  128568  366461 

科目: 來源:第1章《解直角三角形》中考題集(32):1.3 解直角三角形(解析版) 題型:解答題

如圖,在路邊O處安裝路燈,路面寬ED為16米,燈柱OB與路邊的距離OE為2米,且燈柱OB與燈桿AB成120°角.路燈A采用錐形燈罩,燈罩軸線AC與燈桿AB垂直,并與路面ED交于點C,AE恰好與OD垂直.當路燈A到路面的距離AE為多少米時,點C正好是路面ED的中點?并求此時燈柱OB的高.(精確到0.1米)

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(32):1.3 解直角三角形(解析版) 題型:解答題

下圖是一輛自行車的側面示意圖.已知車輪直徑為65cm,車架中AC的長為42cm,座桿AE的長為18cm,點E,A,C在同一條直線上,后軸軸心B與中軸軸心C所在直線BC與地面平行,∠C=73度.求車座E到地面的距離EF.(精確到1cm,參考數(shù)據(jù):sin73°≈0.96,cos73°≈0.29,tan73°≈3.27.)

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(32):1.3 解直角三角形(解析版) 題型:解答題

小剛有一塊含有30°角的直角三角板,他想測量其短直角邊的長度,而手中另外只有一個量角器,于是他采用了如下的方法,并獲得了相關數(shù)據(jù):
第一步,他先用三角板標有刻度的一邊測出量角器的直徑AB的長度為9cm;
第二步,將三角板與量角器按如圖所示的方式擺放,并量得∠BOC為80°(O為AB的中點).
請你根據(jù)小剛測得的數(shù)據(jù),求出三角板的短直角邊AC的長.
(參考數(shù)據(jù):sin80°=0.98,cos80°=0.17,tan80°=5.67;sin40°=0.64,cos40°=0.77,tan40°=0.84,結果精確到0.1cm)

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(32):1.3 解直角三角形(解析版) 題型:解答題

如圖,秋千拉繩的長OB=4米,靜止時,踏板到地面的距離BE=0.6米(踏板厚度忽略不計).小強蕩該秋千時,當秋千拉繩OB運動到最高處OA時,拉繩OA與鉛垂線OE的夾角為60°,試求:
(1)當秋千拉繩OB運動到最高處OA時,踏板離地面的高度AD是多少米?
(2)秋千蕩回到OC(最高處)時,小強蕩該秋千的“寬度”AC是多少米?(結果保留根號)

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(32):1.3 解直角三角形(解析版) 題型:解答題

如圖,某居民小區(qū)內有一塊梯形形狀的空地ABCD,今量得∠A=∠D=120°,AB=AD=20米,居民們籌集了5400元錢準備在空地上種植玫瑰花.已知種植一平方米玫瑰花需要10元錢,居民們籌集的資金夠用嗎?(參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(32):1.3 解直角三角形(解析版) 題型:解答題

如圖,等腰△ABC中,AC=BC,CD是底邊上的高,∠A=30°.
(1)CD與AB有什么數(shù)量關系?請說明理由;
(2)過點D作DD1⊥BC,垂足為D1;D1D2⊥AB,垂足為D2;D2D3⊥BC,垂足為D3;D3D4⊥AB,垂足為D4;…;D2n+1D2n⊥AB,垂足為D2n;D2n+1D2n⊥BC,垂足為D2n+1(n為非零自然數(shù)).若CD=a,請用含a的代數(shù)式表示下表中線段的長度(請將結果直接填入表中);
線段
 
D1D2D3D4  D5D6D2n-1 D2n 
長度     
(3)某工業(yè)園區(qū)一個車間的人字形屋架為(2)中的圖形,跨度AB為16米,CD是該屋架的主柱,DD1,D1D2,D2D3…D2n+1D2n為輔柱.若整個屋架有18根輔柱,則最短一根輔柱的長度約為多少米?(結果精確到0.1米)

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(32):1.3 解直角三角形(解析版) 題型:解答題

(A題)小明家準備建造長為28米的蔬菜大棚,示意圖如圖1.它的橫截面為如圖2所示的四邊形ABCD,已知AB=3米,BC=6米,∠BCD=45°,AB⊥BC,D到BC的距離DE為1米.矩形棚頂ADD′A′及矩形DCC′D′由鋼架及塑料薄膜制作,造價為每平方米120元,其它部分(保溫墻體等)造價共9250元,則這個大棚的總造價為多少元?(精確到1元)
(下列數(shù)據(jù)可供參考=1.41,=1.73,=2.24,=5.39,=5.83)

(B題)如圖,河邊有一條筆直的公路l,公路兩側是平坦的草地.在數(shù)學活動課上,老師要求測量河對岸B點到公路的距離,請你設計一個測量方案.要求:
(1)列出你測量所使用的測量工具;
(2)畫出測量的示意圖,寫出測量的步驟;
(3)用字母表示測得的數(shù)據(jù),求出B點到公路的距離.

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(32):1.3 解直角三角形(解析版) 題型:解答題

圖①,②是曉東同學在進行“居民樓高度、樓間距對住戶采光影響問題”的研究時畫的兩個示意圖.請你閱讀相關文字,解答下面的問題.
(1)圖①是太陽光線與地面所成角度的示意圖.冬至日正午時刻,太陽光線直射在南回歸線(南緯23.5°)B地上.在地處北緯36.5°的A地,太陽光線與地面水平線l所成的角為α,試借助圖①,求α的度數(shù);
(2)圖②是乙樓高度、樓間距對甲樓采光影響的示意圖.甲樓地處A地,其二層住戶的南面窗戶下沿距地面3.4米.現(xiàn)要在甲樓正南面建一幢高度為22.3米的乙樓,為不影響甲樓二層住戶(一層為車庫)的采光,兩樓之間的距離至少應為多少米?

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(32):1.3 解直角三角形(解析版) 題型:解答題

如圖,秋千拉繩OB的長為3米,靜止時,踏板到地面的距離BE長時0.6米(踏板的厚度忽略不計),小亮蕩該秋千時,當秋千拉繩有OB運動到OA時,拉繩OA與鉛垂線OE的夾角為55°,請你計算此時該秋千踏板離地面的高度AD是多少米?(精確到0.1米)

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(32):1.3 解直角三角形(解析版) 題型:解答題

如圖所示,秋千鏈子的長度為3m,靜止時的秋千踏板(大小忽略不計)距地面0.5m.秋千向兩邊擺動時,若最大擺角(擺角指秋千鏈子與鉛垂線的夾角)約為53°,則秋千踏板與地面的最大距離約為多少?
(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6)

查看答案和解析>>

同步練習冊答案