相關習題
 0  128896  128904  128910  128914  128920  128922  128926  128932  128934  128940  128946  128950  128952  128956  128962  128964  128970  128974  128976  128980  128982  128986  128988  128990  128991  128992  128994  128995  128996  128998  129000  129004  129006  129010  129012  129016  129022  129024  129030  129034  129036  129040  129046  129052  129054  129060  129064  129066  129072  129076  129082  129090  366461 

科目: 來源:第26章《圓》中考題集(72):26.7 圓與圓的位置關系(解析版) 題型:解答題

如圖1,已知Rt△ABC中,∠CAB=30°,BC=5.過點A作AE⊥AB,且AE=15,連接BE交AC于點P.
(1)求PA的長;
(2)以點A為圓心,AP為半徑作⊙A,試判斷BE與⊙A是否相切,并說明理由;
(3)如圖2,過點C作CD⊥AE,垂足為D.以點A為圓心,r為半徑作⊙A;以點C為圓心,R為半徑作⊙C.若r和R的大小是可變化的,并且在變化過程中保持⊙A和⊙C相切,且使D點在⊙A的內(nèi)部,B點在⊙A的外部,求r和R的變化范圍.

查看答案和解析>>

科目: 來源:第26章《圓》中考題集(72):26.7 圓與圓的位置關系(解析版) 題型:解答題

如圖,直角梯形ABCD中,AD∥BC,∠A=90°,∠C=60°,AD=3cm,BC=9cm.⊙O1的圓心O1從點A開始沿折線A-D-C以1cm/s的速度向點C運動,⊙O2的圓心O2從點B開始沿BA邊以cm/s的速度向點A運動,⊙O1半徑為2cm,⊙O2的半徑為4cm,若O1、O2分別從點A、點B同時出發(fā),運動的時間為t.
(1)請求出⊙O2與腰CD相切時t的值;
(2)在0s<t≤3s范圍內(nèi),當t為何值時,⊙O1與⊙O2外切?

查看答案和解析>>

科目: 來源:第26章《圓》中考題集(72):26.7 圓與圓的位置關系(解析版) 題型:解答題

如圖,⊙C經(jīng)過坐標原點O,分別交x軸正半軸、y軸正半軸于點B、A,點B的坐標為(4,0),點M在⊙C上,并且∠BMO=120度.
(1)求直線AB的解析式;
(2)若點P是⊙C上的點,過點P作⊙C的切線PN,若∠NPB=30°,求點P的坐標;
(3)若點D是⊙C上任意一點,以B為圓心,BD為半徑作⊙B,并且BD的長為正整數(shù).
①問這樣的圓有幾個?它們與⊙C有怎樣的位置關系?
②在這些圓中,是否存在與⊙C所交的。ㄖ浮袯上的一條。90°的弧,若存在,請給出證明;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第26章《圓》中考題集(72):26.7 圓與圓的位置關系(解析版) 題型:解答題

宏遠廣告公司要為某企業(yè)的一種產(chǎn)品設計商標圖案,給出了如下幾種初步方案,供繼續(xù)設計選用(設圖中圓的半徑均為r)
(1)如圖1,分別以線段O1O2的兩個端點為圓心,以這條線段的長為半徑作出兩個互相交錯的圓的圖案,試求兩圓相交部分的面積;
(2)如圖2,分別以等邊△O1O2O3的三個頂點為圓心,以其邊長為半徑,作出三個兩兩相交的相同的圓,這時,這三個圓相交部分的面積又是多少呢?
(3)如圖3,分別以正方形O1O2O3O4的四個頂點為圓心,以其邊長為半徑,作出四個相同的圓,這時,這四個圓相交部分的面積又是多少呢?

查看答案和解析>>

科目: 來源:第26章《圓》中考題集(72):26.7 圓與圓的位置關系(解析版) 題型:解答題

如圖1,圓O1與圓O2都經(jīng)過A、B兩點,經(jīng)過點A的直線CD與圓O1交于點C,與圓O2交于點D.經(jīng)過點B的直線EF與圓O1交于點E,與圓O2交于點F.

(1)求證:CE∥DF;
(2)在圖1中,若CD和EF可以分別繞點A和點B轉(zhuǎn)動,當點C與點E重合時(如圖2),過點E作直線MN∥DF,試判斷直線MN與圓O1的位置關系,并證明你的結論.

查看答案和解析>>

科目: 來源:第26章《圓》中考題集(72):26.7 圓與圓的位置關系(解析版) 題型:解答題

(1)計算:如圖①,直徑為a的三等圓⊙O1、⊙O2、⊙O3兩兩外切,切點分別為A、B、C,求O1A的長(用含a的代數(shù)式表示);
(2)探索:若干個直徑為a的圓圈分別按如圖②所示的方案一和如圖③所示的方案二的方式排放,探索并求出這兩種方案中n層圓圈的高度hn和hn′(用含n、a的代數(shù)式表示);
(3)應用:現(xiàn)有長方體集裝箱,其內(nèi)空長為5米,寬為3.1米,高為3.1米.用這樣的集裝箱裝運長為5米,底面直徑(橫截面的外圓直徑)為0.1米的圓柱形鋼管,你認為采用(2)中的哪種方案在該集裝箱中裝運鋼管數(shù)最多?并求出一個這樣的集裝箱最多能裝運多少根鋼管?(≈1.73)

查看答案和解析>>

科目: 來源:第26章《圓》中考題集(72):26.7 圓與圓的位置關系(解析版) 題型:解答題

如圖,是一盒剛打開的“蘭州”牌香煙,圖(1)是它的橫截面(矩形ABCD),已知每支香煙底面圓的直徑是8mm.
(1)矩形ABCD的長AB=______mm;
(2)利用圖(2)求矩形ABCD的寬AD.(≈1.73,結果精確到0.1mm)

查看答案和解析>>

科目: 來源:第26章《圓》中考題集(72):26.7 圓與圓的位置關系(解析版) 題型:解答題

如圖是某城市一個主題雕塑的平面示意圖,它由置放于地面l上兩個半徑均為2米的半圓與半徑為4米的⊙A構成.點B、C分別是兩個半圓的圓心,⊙A分別與兩個半圓相切于點E、F,BC長為8米.求EF的長.

查看答案和解析>>

科目: 來源:第26章《圓》中考題集(72):26.7 圓與圓的位置關系(解析版) 題型:解答題

已知Rt△ABC中,∠ACB=90°,AC=6,BC=8.
(Ⅰ)如圖①,若半徑為r1的⊙O1是Rt△ABC的內(nèi)切圓,求r1;
(Ⅱ)如圖②,若半徑為r2的兩個等圓⊙O1、⊙O2外切,且⊙O1與AC、AB相切,⊙O2與BC、AB相切,求r2
(Ⅲ)如圖③,當n大于2的正整數(shù)時,若半徑rn的n個等圓⊙O1、⊙O2、…、⊙On依次外切,且⊙O1與AC、BC相切,⊙On與BC、AB相切,⊙O1、⊙O2、⊙O3、…、⊙On-1均與AB邊相切,求rn

查看答案和解析>>

科目: 來源:第26章《圓》中考題集(72):26.7 圓與圓的位置關系(解析版) 題型:解答題

如圖所示,分別按A、B兩種方法用鋼絲繩捆扎圓形鋼管的截面圖:設A、B兩種方法捆扎所需的繩子的長分別為a、b(不計接頭部分),則a、b的大小關系為:a______b.(填“<”“=“或“>”)

查看答案和解析>>

同步練習冊答案