相關(guān)習(xí)題
 0  129503  129511  129517  129521  129527  129529  129533  129539  129541  129547  129553  129557  129559  129563  129569  129571  129577  129581  129583  129587  129589  129593  129595  129597  129598  129599  129601  129602  129603  129605  129607  129611  129613  129617  129619  129623  129629  129631  129637  129641  129643  129647  129653  129659  129661  129667  129671  129673  129679  129683  129689  129697  366461 

科目: 來源:第26章《二次函數(shù)》?碱}集(17):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

如圖,有長(zhǎng)為30m的籬笆,一面利用墻(墻的最大可用長(zhǎng)度為10m),圍成中間隔有一道籬笆(平行于AB)的矩形花圃.設(shè)花圃的一邊AB為xm,面積為ym2
(1)求y與x的函數(shù)關(guān)系式;
(2)如果要圍成面積為63m2的花圃,AB的長(zhǎng)是多少?
(3)能圍成比63m2更大的花圃嗎?如果能,請(qǐng)求出最大面積;如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》?碱}集(17):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

某倉(cāng)庫(kù)為了保持庫(kù)內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和AB平行的伸縮橫桿.
(1)當(dāng)MN和AB之間的距離為0.5米時(shí),求此時(shí)△EMN的面積;
(2)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(3)請(qǐng)你探究△EMN的面積S(平方米)有無最大值?若有,請(qǐng)求出這個(gè)最大值;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》常考題集(17):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

某大學(xué)畢業(yè)生響應(yīng)國(guó)家“自主創(chuàng)業(yè)”的號(hào)召,投資開辦了一個(gè)裝飾品商店.該店采購(gòu)進(jìn)一種今年新上市的飾品進(jìn)行了30天的試銷售,購(gòu)進(jìn)價(jià)格為20元/件.銷售結(jié)束后,得知日銷售量P(件)與銷售時(shí)間x(天)之間有如下關(guān)系:P=-2x+80(1≤x≤30,且x為整數(shù));又知前20天的銷售價(jià)格Q1(元/件)與銷售時(shí)間x(天)之間有如下關(guān)系:Q1=x+30(1≤x≤20,且x為整數(shù)),后10天的銷售價(jià)格Q2(元/件)與銷售時(shí)間x(天)之間有如下關(guān)系:Q2=45(21≤x≤30,且x為整數(shù)).
(1)試寫出該商店前20天的日銷售利潤(rùn)R1(元)和后10天的日銷售利潤(rùn)R2(元)分別與銷售時(shí)間x(天)之間的函數(shù)關(guān)系式;
(2)請(qǐng)問在這30天的試銷售中,哪一天的日銷售利潤(rùn)最大?并求出這個(gè)最大利潤(rùn).
注:銷售利潤(rùn)=銷售收入-購(gòu)進(jìn)成本.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》?碱}集(17):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

某商品的進(jìn)價(jià)為每件40元.當(dāng)售價(jià)為每件60元時(shí),每星期可賣出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場(chǎng)調(diào)查:每降價(jià)1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設(shè)每件降價(jià)x元、每星期售出商品的利潤(rùn)為y元,請(qǐng)寫出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)當(dāng)降價(jià)多少元時(shí),每星期的利潤(rùn)最大?最大利潤(rùn)是多少?
(3)請(qǐng)畫出上述函數(shù)的大致圖象.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》?碱}集(17):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

已知某種水果的批發(fā)單價(jià)與批發(fā)量的函數(shù)關(guān)系如圖1所示.
(1)請(qǐng)說明圖中①、②兩段函數(shù)圖象的實(shí)際意義;
(2)寫出批發(fā)該種水果的資金金額w(元)與批發(fā)量m(kg)之間的函數(shù)關(guān)系式;在圖2的坐標(biāo)系中畫出該函數(shù)圖象;指出金額在什么范圍內(nèi),以同樣的資金可以批發(fā)到較多數(shù)量的該種水果;
(3)經(jīng)調(diào)查,某經(jīng)銷商銷售該種水果的日最高銷量與零售價(jià)之間的函數(shù)關(guān)系如圖3所示,該經(jīng)銷商擬每日售出60kg以上該種水果,且當(dāng)日零售價(jià)不變,請(qǐng)你幫助該經(jīng)銷商設(shè)計(jì)進(jìn)貨和銷售的方案,使得當(dāng)日獲得的利潤(rùn)最大.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》?碱}集(17):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

紅星公司生產(chǎn)的某種時(shí)令商品每件成本為20元,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),這種商品在未來40天內(nèi)的日銷售量m(件)與時(shí)間t(天)的關(guān)系如下表:
時(shí)間t(天)1361036
日銷售量m(件)9490847624
未來40天內(nèi),前20天每天的價(jià)格y1(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為y1=t+25(1≤t≤20且t為整數(shù)),后20天每天的價(jià)格y2(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為y2=-t+40(21≤t≤40且t為整數(shù)).
下面我們就來研究銷售這種商品的有關(guān)問題:
(1)認(rèn)真分析上表中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識(shí)確定一個(gè)滿足這些數(shù)據(jù)的m(件)與t(天)之間的關(guān)系式;
(2)請(qǐng)預(yù)測(cè)未來40天中哪一天的日銷售利潤(rùn)最大,最大日銷售利潤(rùn)是多少?
(3)在實(shí)際銷售的前20天中,該公司決定每銷售一件商品就捐贈(zèng)a元利潤(rùn)(a<4)給希望工程.公司通過銷售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈(zèng)后的日銷售利潤(rùn)隨時(shí)間t(天)的增大而增大,求a的取值范圍.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》常考題集(17):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

某商品的進(jìn)價(jià)為每件30元,現(xiàn)在的售價(jià)為每件40元,每星期可賣出150件.市場(chǎng)調(diào)查反映:如果每件的售價(jià)每漲1元(售價(jià)每件不能高于45元),那么每星期少賣10件.設(shè)每件漲價(jià)x元(x為非負(fù)整數(shù)),每星期的銷量為y件.
(1)求y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)如何定價(jià)才能使每星期的利潤(rùn)最大且每星期的銷量較大?每星期的最大利潤(rùn)是多少?

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》?碱}集(17):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

某市種植某種綠色蔬菜,全部用來出口.為了擴(kuò)大出口規(guī)模,該市決定對(duì)這種蔬菜的種植實(shí)行政府補(bǔ)貼,規(guī)定每種植-畝這種蔬菜一次性補(bǔ)貼菜農(nóng)若干元.經(jīng)調(diào)查,種植畝數(shù)y(畝)與補(bǔ)貼數(shù)額x(元)之間大致滿足如圖1所示的一次函數(shù)關(guān)系.隨著補(bǔ)貼數(shù)額x的不斷增大,出口量也不斷增加,但每畝蔬菜的收益z(元)會(huì)相應(yīng)降低,且z與x之間也大致滿足如圖2所示的一次函數(shù)關(guān)系.
(1)在政府未出臺(tái)補(bǔ)貼措施前,該市種植這種蔬菜的總收益額為多少?
(2)分別求出政府補(bǔ)貼政策實(shí)施后,種植畝數(shù)y和每畝蔬菜的收益z與政府補(bǔ)貼數(shù)額x之間的函數(shù)關(guān)系式;
(3)要使全市這種蔬菜的總收益w(元)最大,政府應(yīng)將每畝補(bǔ)貼數(shù)額x定為多少?并求出總收益w的最大值.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》?碱}集(17):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

王亮同學(xué)善于改進(jìn)學(xué)習(xí)方法,他發(fā)現(xiàn)對(duì)解題過程進(jìn)行回顧反思,效果會(huì)更好.某一天他利用30分鐘時(shí)間進(jìn)行自主學(xué)習(xí).假設(shè)他用于解題的時(shí)間x(單位:分鐘)與學(xué)習(xí)收益量y的關(guān)系如圖甲所示,用于回顧反思的時(shí)間x(單位:分鐘)與學(xué)習(xí)收益量y的關(guān)系如圖乙所示(其中OA是拋物線的一部分,A為拋物線的頂點(diǎn)),且用于回顧反思的時(shí)間不超過用于解題的時(shí)間.

(1)求王亮解題的學(xué)習(xí)收益量y與用于解題的時(shí)間x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求王亮回顧反思的學(xué)習(xí)收益量y與用于回顧反思的時(shí)間x之間的函數(shù)關(guān)系式;
(3)王亮如何分配解題和回顧反思的時(shí)間,才能使這30分鐘的學(xué)習(xí)收益總量最大?
(學(xué)習(xí)收益總量=解題的學(xué)習(xí)收益量+回顧反思的學(xué)習(xí)收益量)

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》?碱}集(17):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

某服裝公司試銷一種成本為每件50元的T恤衫,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),又不高于每件70元,試銷中銷售量y(件)與銷售單價(jià)x(元)的關(guān)系可以近似的看作一次函數(shù)(如圖).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)公司獲得的總利潤(rùn)(總利潤(rùn)=總銷售額-總成本)為P元,求P與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當(dāng)x取何值時(shí),P的值最大,最大值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案