相關(guān)習(xí)題
 0  140128  140136  140142  140146  140152  140154  140158  140164  140166  140172  140178  140182  140184  140188  140194  140196  140202  140206  140208  140212  140214  140218  140220  140222  140223  140224  140226  140227  140228  140230  140232  140236  140238  140242  140244  140248  140254  140256  140262  140266  140268  140272  140278  140284  140286  140292  140296  140298  140304  140308  140314  140322  366461 

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知一元二次方程x2-4x-5=0的兩個(gè)實(shí)數(shù)根為x1、x2,且x1<x2.若x1、x2分別是拋物線y=-x2+bx+c與x軸的兩個(gè)交點(diǎn)A、B的橫坐標(biāo)(如下圖所示).
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線與y軸的交點(diǎn)為C,拋物線的頂點(diǎn)為D,請(qǐng)直接寫(xiě)出點(diǎn)C、D的坐標(biāo)并求出四邊形ABDC的面積;
(3)是否存在直線y=kx(k>0)與線段BD相交且把四邊形ABDC的面積分為相等的兩部分?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
[注:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為()].

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,已知拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)(1,-5)和(-2,4)
(1)求這條拋物線的解析式;
(2)設(shè)此拋物線與直線y=x相交于點(diǎn)A,B(點(diǎn)B在點(diǎn)A的右側(cè)),平行于y軸的直線x=m(0<m<+1)與拋物線交于點(diǎn)M,與直線y=x交于點(diǎn)N,交x軸于點(diǎn)P,求線段MN的長(zhǎng)(用含m的代數(shù)式表示);
(3)在條件(2)的情況下,連接OM、BM,是否存在m的值,使△BOM的面積S最大?若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫(xiě)出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周長(zhǎng)最。咳绻嬖,求出周長(zhǎng)的最小值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

(1)如圖,A1,A2,A3是拋物線y=x2圖象上的三點(diǎn),若A1,A2,A3三點(diǎn)的橫坐標(biāo)從左至右依次為1,2,3.求△A1A2A3的面積.
(2)若將(1)問(wèn)中的拋物線改為y=x2-x+2和y=ax2+bx+c(a>0),其他條件不變,請(qǐng)分別直接寫(xiě)出兩種情況下△A1A2A3的面積.
(3)現(xiàn)有一拋物線組:y1=x2-x;y2=x2-x;y3=x2-x;y4=x2-x;y5=x2-x;…依據(jù)變化規(guī)律,請(qǐng)你寫(xiě)出拋物線組第n個(gè)式子yn的函數(shù)解析式;現(xiàn)在x軸上有三點(diǎn)A(1,0),B(2,0),C(3,0).經(jīng)過(guò)A,B,C向x軸作垂線,分別交拋物線組y1,y2,y3,…,yn于A1,B1,C1;A2,B2,C2;A3,B3,C3;…;An,Bn,Cn.記為S1,為S2,…,為Sn,試求S1+S2+S3+…+S10的值.
(4)在(3)問(wèn)條件下,當(dāng)n>10時(shí)有Sn-10+Sn-9+Sn-8+…Sn的值不小于,請(qǐng)?zhí)角蟠藯l件下正整數(shù)n是否存在最大值?若存在,請(qǐng)求出此值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,點(diǎn)D,E分別是矩形OABC中AB和BC邊上的中點(diǎn),點(diǎn)B的坐標(biāo)為(6,4)
(1)寫(xiě)出A,C,E,D四點(diǎn)的坐標(biāo);并判斷點(diǎn)O到直線DE的距離是否等于線段的OE長(zhǎng);
(2)動(dòng)點(diǎn)F在線段DE上,F(xiàn)G⊥x軸于G,F(xiàn)H⊥y軸于H,求矩形面積最大時(shí)點(diǎn)F的坐標(biāo)(利用圖1解答);
(3)我們給出如下定義:分別過(guò)拋物向上的兩點(diǎn)(不在x軸上)作x軸的垂線,如果以這兩點(diǎn)及垂足為頂點(diǎn)的矩形在這條拋物線與x軸圍成的封閉圖形內(nèi)部,則稱這個(gè)矩形是這條拋物線的內(nèi)接矩形,請(qǐng)你理解上述定義,解答下面的問(wèn)題:若矩形OABC是某個(gè)拋物線的周長(zhǎng)最大的內(nèi)接矩形,求這個(gè)拋物線的解析式(利用圖2解答).

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,△ABC的高AD為3,BC為4,直線EF∥BC,交線段AB于E,交線段AC于F,交AD于G,以EF為斜邊作等腰直角三角形PEF(點(diǎn)P與點(diǎn)A在直線EF的異側(cè)),設(shè)EF為x,△PEF與四邊形BCEF重合部分的面積為y.
(1)求線段AG(用x表示);
(2)求y與x的函數(shù)關(guān)系式,并求x的取值范圍.

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖1,拋物線y=x2的頂點(diǎn)為P,A、B是拋物線上兩點(diǎn),AB∥x軸,四邊形ABCD為矩形,CD邊經(jīng)過(guò)點(diǎn)P,AB=2AD.
(1)求矩形ABCD的面積;
(2)如圖2,若將拋物線“y=x2”,改為拋物線“y=x2+bx+c”,其他條件不變,請(qǐng)猜想矩形ABCD的面積;
(3)若將拋物線“y=x2+bx+c”改為拋物線“y=ax2+bx+c”,其他條件不變,請(qǐng)猜想矩形ABCD的面積.(用a、b、c表示,并直接寫(xiě)出答案)
附加題:若將題中“y=x2”改為“y=ax2+bx+c”,“AB=2AD”條件不要,其他條件不變,探索矩形ABCD面積為常數(shù)時(shí),矩形ABCD需要滿足什么條件并說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,將△AOB置于平面直角坐標(biāo)系中,其中點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),∠ABO=60度.
(1)若△AOB的外接圓與y軸交于點(diǎn)D,求D點(diǎn)坐標(biāo).
(2)若點(diǎn)C的坐標(biāo)為(-1,0),試猜想過(guò)D,C的直線與△AOB的外接圓的位置關(guān)系,并加以說(shuō)明.
(3)二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)O和A且頂點(diǎn)在圓上,求此函數(shù)的解析式.

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

在平面直角坐標(biāo)系中給定以下五個(gè)點(diǎn)A(-3,0),B(-1,4),C(0,3),D(,),E(1,0).
(1)請(qǐng)從五點(diǎn)中任選三點(diǎn),求一條以平行于y軸的直線為對(duì)稱軸的拋物線的解析式;
(2)求該拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸,并畫(huà)出草圖;
(3)已知點(diǎn)F(-1,)在拋物線的對(duì)稱軸上,直線y=過(guò)點(diǎn)G(-1,)且垂直于對(duì)稱軸.驗(yàn)證:以E(1,0)為圓心,EF為半徑的圓與直線y=相切.請(qǐng)你進(jìn)一步驗(yàn)證,以拋物線上的點(diǎn)D(,)為圓心DF為半徑的圓也與直線y=相切.由此你能猜想到怎樣的結(jié)論.

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,△OAB的頂點(diǎn)A的坐標(biāo)為(10,0),頂點(diǎn)B在第一象限內(nèi),且|AB|=3,sin∠OAB=
(1)若點(diǎn)C是點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn),求經(jīng)過(guò)O、C、A三點(diǎn)的拋物線的函數(shù)表達(dá)式;
(2)在(1)中,拋物線上是否存在一點(diǎn)P,使以P、O、C、A為頂點(diǎn)的四邊形為梯形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若將點(diǎn)O、點(diǎn)A分別變換為點(diǎn)Q(-2k,0)、點(diǎn)R(5k,0)(k>1的常數(shù)),設(shè)過(guò)Q、R兩點(diǎn),且以QR的垂直平分線為對(duì)稱軸的拋物線與y軸的交點(diǎn)為N,其頂點(diǎn)為M,記△QNM的面積為S△QMN,△QNR的面積S△QNR,求S△QMN:S△QNR的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案