相關(guān)習題
 0  141795  141803  141809  141813  141819  141821  141825  141831  141833  141839  141845  141849  141851  141855  141861  141863  141869  141873  141875  141879  141881  141885  141887  141889  141890  141891  141893  141894  141895  141897  141899  141903  141905  141909  141911  141915  141921  141923  141929  141933  141935  141939  141945  141951  141953  141959  141963  141965  141971  141975  141981  141989  366461 

科目: 來源:第19章《相似形》中考題集(17):19.6 相似三角形的性質(zhì)(解析版) 題型:解答題

已知:如圖①,在?ABCD中,O為對角線BD的中點.過O的直線MN交直線AB于點M,交直線CD于點N;過O的另一條直線PQ交直線AD于點P,交直線BC于點Q,連接PN、MQ.

(1)試證明△PON與△QOM全等;
(2)若點O為直線BD上任意一點,其他條件不變,則△PON與△QOM又有怎樣的關(guān)系?試就點O在圖②所示的位置,畫出圖形,證明你的猜想;
(3)若點O為直線BD上任意一點(不與點B、D重合),設OD:OB=k,PN=x,MQ=y,則y與x之間的函數(shù)關(guān)系式為______.

查看答案和解析>>

科目: 來源:第19章《相似形》中考題集(17):19.6 相似三角形的性質(zhì)(解析版) 題型:解答題

如圖,點D,E分別在△ABC的邊BC,BA上,四邊形CDEF是等腰梯形,EF∥CD.EF與AC交于點G,且∠BDE=∠A.
(1)試問:AB•FG=CF•CA成立嗎?說明理由;
(2)若BD=FC,求證:△ABC是等腰三角形.

查看答案和解析>>

科目: 來源:第19章《相似形》中考題集(17):19.6 相似三角形的性質(zhì)(解析版) 題型:解答題

如圖,在?ABCD中,AE、BF分別平分∠DAB和∠ABC,交CD于點E、F,AE、BF相交于點M.
(1)試說明:AE⊥BF;
(2)判斷線段DF與CE的大小關(guān)系,并予以說明.

查看答案和解析>>

科目: 來源:第19章《相似形》中考題集(17):19.6 相似三角形的性質(zhì)(解析版) 題型:解答題

如圖①、②在?ABCD中,∠BAD、∠ABC的平分線AF、BG分別與線段CD兩側(cè)的延長線(或線段CD)相交于點F、G,AF與BG相交于點E.
(1)在圖①中,求證:AF⊥BG,DF=CG;
(2)在圖②中,仍有(1)中的AF⊥BG、DF=CG.若AB=10,AD=6,BG=4,求FG和AF的長.

查看答案和解析>>

科目: 來源:第19章《相似形》中考題集(17):19.6 相似三角形的性質(zhì)(解析版) 題型:解答題

如圖,已知:在Rt△ABC中,∠ACB=90°,sinB=,D是BC上一點,DE⊥AB,垂足為E,CD=DE,AC+CD=9.求BC的長.

查看答案和解析>>

科目: 來源:第19章《相似形》中考題集(17):19.6 相似三角形的性質(zhì)(解析版) 題型:解答題

已知,如圖,AD為Rt△ABC斜邊BC上的高,點E為DA延長線上一點,連接BE,過點C作CF⊥BE于點F,交AB、AD于M、N兩點.
(1)若線段AM、AN的長是關(guān)于x的一元二次方程x2-2mx+n2-mn+m2=0的兩個實數(shù)根,求證:AM=AN;
(2)若AN=,DN=,求DE的長;
(3)若在(1)的條件下,S△AMN:S△ABE=9:64,且線段BF與EF的長是關(guān)于y的一元二次方程5y2-16ky+10k2+5=0的兩個實數(shù)根,求BC的長.

查看答案和解析>>

科目: 來源:第19章《相似形》中考題集(17):19.6 相似三角形的性質(zhì)(解析版) 題型:解答題

如圖,在平行四邊形ABCD中,過點B作BE⊥CD于E,F(xiàn)為AE上一點,且∠BFE=∠C.
(1)求證:△ABF∽△EAD;
(2)若AB=5,AD=3,∠BAE=30°,求BF的長.

查看答案和解析>>

科目: 來源:第19章《相似形》中考題集(18):19.6 相似三角形的性質(zhì)(解析版) 題型:解答題

把兩塊全等的直角三角形ABC和DEF疊放在一起,使三角板DEF的銳角頂點D與三角板ABC的斜邊中點O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不動,讓三角板DEF繞點O旋轉(zhuǎn),設射線DE與射線AB相交于點P,射線DF與線段BC相交于點Q.
(1)如圖1,當射線DF經(jīng)過點B,即點Q與點B重合時,易證△APD∽△CDQ.此時,AP•CQ=______;
(2)將三角板DEF由圖1所示的位置繞點O沿逆時針方向旋轉(zhuǎn),設旋轉(zhuǎn)角為α.其中0°<α<90°,問AP•CQ的值是否改變?說明你的理由;
(3)在(2)的條件下,設CQ=x,兩塊三角板重疊面積為y,求y與x的函數(shù)關(guān)系式.(圖2,圖3供解題用)

查看答案和解析>>

科目: 來源:第19章《相似形》中考題集(18):19.6 相似三角形的性質(zhì)(解析版) 題型:解答題

(Ⅰ)如圖1,點P在平行四邊形ABCD的對角線BD上,一直線過點P分別交BA,BC的延長線于點Q,S,交AD,CD于點R,T.求證:PQ•PR=PS•PT;
(Ⅱ)如圖2,圖3,當點P在平行四邊形ABCD的對角線BD或DB的延長線上時,PQ•PR=PS•PT是否仍然成立?若成立,試給出證明;若不成立,試說明理由(要求僅以圖2為例進行證明或說明);
(Ⅲ)如圖4,ABCD為正方形,A,E,F(xiàn),G四點在同一條直線上,并且AE=6cm,EF=4cm,試以(Ⅰ)所得結(jié)論為依據(jù),求線段FG的長度.

查看答案和解析>>

科目: 來源:第19章《相似形》中考題集(18):19.6 相似三角形的性質(zhì)(解析版) 題型:解答題

取一副三角板按圖①拼接,固定三角板ADC,將三角板ABC繞點A依順時針方向旋轉(zhuǎn)一個大小為α的角(0°<α≤45°)得到△ABC′,如圖所示.
試問:
(1)當α為多少度時,能使得圖②中AB∥DC;
(2)當旋轉(zhuǎn)至圖③位置,此時α又為多少度圖③中你能找出哪幾對相似三角形,并求其中一對的相似比;
(3)連接BD,當0°<α≤45°時,探尋∠DBC′+∠CAC′+∠BDC值的大小變化情況,并給出你的證明.

查看答案和解析>>

同步練習冊答案