科目: 來源:2012年初中畢業(yè)升學考試(浙江臺州卷)數(shù)學(解析版) 題型:解答題
如圖,正比例函數(shù)y=kx(x≥0)與反比例函數(shù)的圖象交于點
A(2,3),
(1)求k,m的值;
(2)寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍.
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學考試(浙江臺州卷)數(shù)學(解析版) 題型:解答題
如圖,為測量江兩岸碼頭B、D之間的距離,從山坡上高度為50米的A處測得碼頭B的俯角∠EAB為15°,碼頭D的俯角∠EAD為45°,點C在線段BD的延長線上,AC⊥BC,垂足為C,求碼頭B、D的距離(結果保留整數(shù)).
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學考試(浙江臺州卷)數(shù)學(解析版) 題型:解答題
某地為提倡節(jié)約用水,準備實行自來水“階梯計費”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費,為更好地決策,自來水公司隨機抽取部分用戶的用適量數(shù)據(jù),并繪制了如下不完整統(tǒng)計圖(每組數(shù)據(jù)包括右端點但不包括左端點),請你根據(jù)統(tǒng)計圖解決下列問題:
(1)此次調查抽取了多少用戶的用水量數(shù)據(jù)?
(2)補全頻數(shù)分布直方圖,求扇形統(tǒng)計圖中“25噸~30噸”部分的圓心角度數(shù);
(3)如果自來水公司將基本用水量定為每戶25噸,那么該地20萬用戶中約有多少用戶的用水全部享受基本價格?
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學考試(浙江臺州卷)數(shù)學(解析版) 題型:解答題
已知,如圖1,△ABC中,BA=BC,D是平面內不與A、B、C重合的任意一點,∠ABC=∠DBE,BD=BE.
(1)求證:△ABD≌△CBE;
(2)如圖2,當點D是△ABC的外接圓圓心時,請判斷四邊形BDCE的形狀,并證明你的結論.
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學考試(浙江臺州卷)數(shù)學(解析版) 題型:解答題
某汽車在剎車后行駛的距離s(單位:米)與時間t(單位:秒)之間的關系得部分數(shù)據(jù)如下表:
時間t(秒) |
0 |
0.2 |
0.4 |
0.6 |
0.8 |
1.0 |
1.2 |
… |
行駛距離s(米) |
0 |
2.8 |
5.2 |
7.2 |
8.8 |
10 |
10.8 |
… |
(1)根據(jù)這些數(shù)據(jù)在給出的坐標系中畫出相應的點;
(2)選擇適當?shù)暮瘮?shù)表示s與t之間的關系,求出相應的函數(shù)解析式;
(3)①剎車后汽車行駛了多長距離才停止?
②當t分別為t1,t2(t1<t2)時,對應s的值分別為s1,s2,請比較與的大小,并解釋比較結果的實際意義.
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學考試(浙江臺州卷)數(shù)學(解析版) 題型:解答題
定義:P、Q分別是兩條線段a和b上任意一點,線段PQ長度的最小值叫做線段與線段的距離.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四點.
(1)根據(jù)上述定義,當m=2,n=2時,如圖1,線段BC與線段OA的距離是_____,
當m=5,n=2時,如圖2,線段BC與線段OA的距離(即線段AB的長)為______
(2)如圖3,若點B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關于m的函數(shù)解析式.
(3)當m的值變化時,動線段BC與線段OA的距離始終為2,線段BC的中點為M.
①求出點M隨線段BC運動所圍成的封閉圖形的周長;
②點D的坐標為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值,使以A、M、H為頂點的三角形與△AOD相似,若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學考試(浙江湖州卷)數(shù)學(解析版) 題型:選擇題
要使分式有意義,x的取值范圍滿足【 】
A.x=0 B.x≠0 C.x>0 D.x<0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com