相關(guān)習(xí)題
 0  217994  218002  218008  218012  218018  218020  218024  218030  218032  218038  218044  218048  218050  218054  218060  218062  218068  218072  218074  218078  218080  218084  218086  218088  218089  218090  218092  218093  218094  218096  218098  218102  218104  218108  218110  218114  218120  218122  218128  218132  218134  218138  218144  218150  218152  218158  218162  218164  218170  218174  218180  218188  366461 

科目: 來源: 題型:

將一副直角三角板按圖1的方式放置,三角板ACB的直角頂點A在三角板EDF的直角邊DE上,點C、D、B、F在同一直線上,點D、B是CF的三等分點,CF=6.
(1)三角板ACB固定不動,將三角板EDF繞點D逆時針旋轉(zhuǎn),使DE與AC交于點M,DF與AB交于點N,當(dāng)EF∥CB時(如圖2),DF旋轉(zhuǎn)的度數(shù)為
 
;
(2)求圖2中的四邊形AMDN的周長;
(3)將圖2中的三角板EDF繞點D繼續(xù)逆時針旋轉(zhuǎn)15°得圖3,猜想圖3中的四邊形AMDN是什么四邊形,并證明你的猜想.

查看答案和解析>>

科目: 來源: 題型:

如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點E,F(xiàn)分別是線段BC,AC的中點,連結(jié)EF.
(1)線段BE與AF的位置關(guān)系是
 
,
AF
BE
=
 

(2)如圖2,當(dāng)△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),連結(jié)AF,BE,(1)中的結(jié)論是否仍然成立.如果成立,請證明;如果不成立,請說明理由.
(3)如圖3,當(dāng)△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),延長FC交AB于點D,如果AD=6-2
3
,求旋轉(zhuǎn)角a的度數(shù).

查看答案和解析>>

科目: 來源: 題型:

如圖1,矩形OABC在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A(0,4),C(2,0).將矩形OABC繞點O順時針方向旋轉(zhuǎn)135°,得到矩形EFGH(點E與點O重合).
(Ⅰ)若GH交y軸于點M,則∠FOM=
 
°,OM=
 

(Ⅱ)將矩形EFGH沿y軸向上平移t個單位.
①如圖2,直線GH與x軸交于點D,若AD∥BO,求t的值;
②若矩形EFGH與矩形OABC重疊部分的面積為s個平方單位,試求當(dāng)0<t≤4
2
-2時,s與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目: 來源: 題型:

如圖,△ABC中,∠C=90°,AC=8cm,BC=6cm,點P、Q分別在邊AC、BC上,其中CQ=a,CP=b.過點P作AC的垂線l交邊AB于點R,作△PQR關(guān)于直線l對稱的圖形,得到△PQ′R,我們把這個操作過程記為CZ[a,b].
(1)若CZ[a,b]使點Q′恰為AB的中點,則b=
 
;當(dāng)操作過程為CZ[3,4]時,△PQR與△PQ′R組合而成的軸對稱圖形的形狀是
 
;
(2)若a=b,則:
①當(dāng)a為何值時,點Q′恰好落在AB上?
②若記△PQ′R與△PAR重疊部分的面積為S(cm2),求S與a的函數(shù)關(guān)系式,并寫出a的取值范圍;
(3)當(dāng)四邊形PQRQ′為平行四邊形時,求四邊形PQRQ′面積最大值.

查看答案和解析>>

科目: 來源: 題型:

如圖,有一張直角三角形紙片ABC,∠ACB=90°,∠B=60°,BC=3,直角邊AC在x軸上,B點在第二象限,A(
3
,0),AB交y軸于E,將紙片過E點折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開還原沿EF剪開得到四邊形BCFE,然后把四邊形BCFE從E點開始沿射線EA方向平行移動,至B點到達(dá)A點停止(記平移后的四邊形為B1C1F1E1).在平移過程中,設(shè)平移的距離BB1=x,四邊形B1C1F1E1與△AEF重疊的面積為S.
(1)求折痕EF的長;
(2)平移過程中是否存在點F1落在y軸上,若存在,求出x的值;若不存在,說明理由;
(3)直接寫出S與x的函數(shù)關(guān)系式及自變量x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

在一張長方形紙片ABCD中,AB=25cm,AD=20cm,現(xiàn)將這張紙片按下列圖示方法折疊,請解決下列問題.
(1)如圖(1),折痕為DE,點A的對應(yīng)點F在CD上,求折痕DE的長;
(2)如圖(2),H,G分別為BC,AD的中點,A的對應(yīng)點F在HG上,折痕為DE,求重疊部分的面積;
(3)如圖(3),在圖(2)中,把長方形ABCD沿著HG對開,變成兩張長方形紙片,將兩張紙片任意疊合后,判斷重疊四邊形的形狀,并證明;
(4)在(3)中,重疊四邊形的周長是否存在最大值或最小值?如果存在,試求出來;如果不存在,試簡要說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知兩條平行線l1、l2之間的距離為6,截線CD分別交l1、l2于C、D兩點,一直角的頂點P在線段CD上運(yùn)動(點P不與點C、D重合),直角的兩邊分別交l1、l2于A、B兩點.
(1)操作發(fā)現(xiàn)
如圖1,過點P作直線l3∥l1,作PE⊥l1,點E是垂足,過點B作BF⊥l3,點F是垂足.此時,小明認(rèn)為△PEA∽△PFB,你同意嗎?為什么?
(2)猜想論證
將直角∠APB從圖1的位置開始,繞點P順時針旋轉(zhuǎn),在這一過程中,試觀察、猜想:當(dāng)AE滿足什么條件時,以點P、A、B為頂點的三角形是等腰三角形?在圖2中畫出圖形,證明你的猜想.
(3)延伸探究
在(2)的條件下,當(dāng)截線CD與直線l1所夾的鈍角為150°時,設(shè)CP=x,試探究:是否存在實數(shù)x,使△PAB的邊AB的長為4
5
?請說明理由.

查看答案和解析>>

科目: 來源: 題型:

數(shù)學(xué)活動-求重疊部分的面積

(1)問題情境:如圖①,將頂角為120°的等腰三角形紙片(紙片足夠大)的頂點P與等邊△ABC的內(nèi)心O重合,已知OA=2,則圖中重疊部分△PAB的面積為
 

(2)探究1:在(1)的條件下,將紙片繞P點旋轉(zhuǎn)至如圖②所示位置,紙片兩邊分別與AC,AB交于點E,F(xiàn),圖②中重疊部分的面積與圖①重疊部分的面積是否相等?如果相等,請給予證明;如果不相等,請說明理由.
(3)探究2:如圖③,若∠CAB=α(0°<α<90°),AD為∠CAB的角平分線,點P在射線AD上,且AP=2,以P為頂點的等腰三角形紙片(紙片足夠大)與∠CAB的兩邊AC,AB分別交于點E、F,∠EPF=180°-α,求重疊部分的面積.(用α或
α2
的三角函數(shù)值表示)

查看答案和解析>>

科目: 來源: 題型:

如圖1,在?ABCD中,AH⊥DC,垂足為H,AB=4
7
,AD=7,AH=
21
.現(xiàn)有兩個動點E,F(xiàn)同時從點A出發(fā),分別以每秒1個單位長度、每秒3個單位長度的速度沿射線AC方向勻速運(yùn)動,在點E,F(xiàn)的運(yùn)動過程中,以EF為邊作等邊△EFG,使△EFG與△ABC在射線AC的同側(cè),當(dāng)點E運(yùn)動到點C時,E,F(xiàn)兩點同時停止運(yùn)動,設(shè)運(yùn)動時間為t秒.
(1)求線段AC的長;
(2)在整個運(yùn)動過程中,設(shè)等邊△EFG與△ABC重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量t的取值范圍;
(3)當(dāng)?shù)冗叀鱁FG的頂點E到達(dá)點C時,如圖2,將△EFG繞著點C旋轉(zhuǎn)一個角度α(0°<α<360°),在旋轉(zhuǎn)過程中,點E與點C重合,F(xiàn)的對應(yīng)點為F′,G的對應(yīng)點為G′,設(shè)直線F′G′與射線DC、射線AC分別相交于M,N兩點.試問:是否存在點M,N,使得△CMN是以∠MCN為底角的等腰三角形?若存在,請求出CM的長度;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

如圖1,邊長為4的正方形ABCD中,點E在AB邊上(不與點A,B重合),點F在BC邊上(不與點B,C重合).
第一次操作:將線段EF繞點F順時針旋轉(zhuǎn),當(dāng)點E落在正方形上時,記為點G;
第二次操作:將線段FG繞點G順時針旋轉(zhuǎn),當(dāng)點F落在正方形上時,記為點H;
依次操作下去…
(1)圖2中的△EFD是經(jīng)過兩次操作后得到的,其形狀為
 
,求此時線段EF的長;
(2)若經(jīng)過三次操作可得到四邊形EFGH.
①請判斷四邊形EFGH的形狀為
 
,此時AE與BF的數(shù)量關(guān)系是
 
;
②以①中的結(jié)論為前提,設(shè)AE的長為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍;
(3)若經(jīng)過多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是多少?它可能是正多邊形嗎?如果是,請直接寫出其邊長;如果不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案