科目: 來源: 題型:
【問題提出】
學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進行研究.
【初步思考】
我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進行分類,可分為“∠B是直角、鈍角、銳角”三種情況進行探究.
【深入探究】
第一種情況:當(dāng)∠B是直角時,△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù) HL ,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B是鈍角時,△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF.
第三種情況:當(dāng)∠B是銳角時,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡)
(4)∠B還要滿足什么條件,就可以使△ABC≌△DEF?請直接寫出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若 ∠B≥∠A ,則△ABC≌△DEF.
查看答案和解析>>
科目: 來源: 題型:
如圖,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O為△ABC的內(nèi)切圓.
(1)求⊙O的半徑;
(2)點P從點B沿邊BA向點A以1cm/s的速度勻速運動,以P為圓心,PB長為半徑作圓,設(shè)點P運動的時間為t s,若⊙P與⊙O相切,求t的值.
查看答案和解析>>
科目: 來源: 題型:
從甲地到乙地,先是一段平路,然后是一段上坡路,小明騎車從甲地出發(fā),到達乙地后立即原路返回甲地,途中休息了一段時間,假設(shè)小明騎車在平路、上坡、下坡時分別保持勻速前進.已知小明騎車上坡的速度比在平路上的速度每小時少5km,下坡的速度比在平路上的速度每小時多5km.設(shè)小明出發(fā)x h后,到達離甲地y km的地方,圖中的折線OABCDE表示y與x之間的函數(shù)關(guān)系.
(1)小明騎車在平路上的速度為 km/h;他途中休息了 h;
(2)求線段AB、BC所表示的y與x之間的函數(shù)關(guān)系式;
(3)如果小明兩次經(jīng)過途中某一地點的時間間隔為0.15h,那么該地點離甲地多遠?
查看答案和解析>>
科目: 來源: 題型:
已知二次函數(shù)y=x2﹣2mx+m2+3(m是常數(shù)).
(1)求證:不論m為何值,該函數(shù)的圖象與x軸沒有公共點;
(2)把該函數(shù)的圖象沿y軸向下平移多少個單位長度后,得到的函數(shù)的圖象與x軸只有一個公共點?
查看答案和解析>>
科目: 來源: 題型:
如圖,梯子斜靠在與地面垂直(垂足為O)的墻上,當(dāng)梯子位于AB位置時,它與地面所成的角∠ABO=60°;當(dāng)梯子底端向右滑動1m(即BD=1m)到達CD位置時,它與地面所成的角∠CDO=51°18′,求梯子的長.
(參考數(shù)據(jù):sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)
查看答案和解析>>
科目: 來源: 題型:
某養(yǎng)殖戶每年的養(yǎng)殖成本包括固定成本和可變成本,其中固定成本每年均為4萬元,可變成本逐年增長,已知該養(yǎng)殖戶第1年的可變成本為2.6萬元,設(shè)可變成本平均的每年增長的百分率為x.
查看答案和解析>>
科目: 來源: 題型:
為了了解某市120000名初中學(xué)生的視力情況,某校數(shù)學(xué)興趣小組,并進行整理分析.
(1)小明在眼鏡店調(diào)查了1000名初中學(xué)生的視力,小剛在鄰居中調(diào)查了20名初中學(xué)生的視力,他們的抽樣是否合理?并說明理由.
(2)該校數(shù)學(xué)興趣小組從該市七、八、九年級各隨機抽取了1000名學(xué)生進行調(diào)查,整理他們的視力情況數(shù)據(jù),得到如下的折線統(tǒng)計圖.
請你根據(jù)抽樣調(diào)查的結(jié)果,估計該市120000名初中學(xué)生視力不良的人數(shù)是多少?
查看答案和解析>>
科目: 來源: 題型:
如圖,在△ABC中,D、E分別是AB、AC的中點,過點E作EF∥AB,交BC于點F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時,四邊形DBEF是菱形?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com