科目: 來源:2016屆江蘇省泰州市沿江區(qū)域中考二模數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,拋物線y=﹣x2﹣2x+3與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1關(guān)于點B中心對稱得C2,C2與x軸交于另一點C,將C2關(guān)于點C中心對稱得C3,連接C1與C3的頂點,則圖中陰影部分的面積為_________.
查看答案和解析>>
科目: 來源:2016屆江蘇省泰州市沿江區(qū)域中考二模數(shù)學(xué)試卷(解析版) 題型:解答題
某市需調(diào)查該市九年級男生的體能狀況,為此抽取了50名九年級男生進行引體向上個數(shù)測試,測試情況繪制成表格如下:
個數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
人數(shù) | 1 | 1 | 6 | 18 | 10 | 6 | 2 | 2 | 1 | 1 | 2 |
(1)求這次抽樣測試數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(2)在平均數(shù)、眾數(shù)和中位數(shù)中,你認(rèn)為用哪一個統(tǒng)計量作為該市九年級男生引體向上項目測試的合格標(biāo)準(zhǔn)個數(shù)較為合適?簡要說明理由;
(3)如果該市今年有3萬名九年級男生,根據(jù)(2)中你認(rèn)為合格的標(biāo)準(zhǔn),試估計該市九年級男生引體向上項目測試的合格人數(shù)是多少?
查看答案和解析>>
科目: 來源:2016屆江蘇省泰州市沿江區(qū)域中考二模數(shù)學(xué)試卷(解析版) 題型:解答題
某中學(xué)準(zhǔn)備隨機選出七、八、九三個年級各1名學(xué)生擔(dān)任學(xué)校國旗升旗手.現(xiàn)已知這三個年級每個年級分別選送一男、一女共6名學(xué)生作為備選人.
(1)請你利用樹狀圖或表格列出所有可能的選法;
(2)求選出“一男兩女”三名國旗升旗手的概率.
查看答案和解析>>
科目: 來源:2016屆江蘇省泰州市沿江區(qū)域中考二模數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,小明所在教學(xué)樓的每層高度為3.5米,為了測量旗桿MN的高度,他在教學(xué)樓一樓的窗臺A處測得旗桿頂部M的仰角為45°,他在二樓窗臺B處測得M的仰角為31°,已知每層樓的窗臺離該層的地面高度均為1米,求旗桿MN的高度;(結(jié)果保留兩位小數(shù))
(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目: 來源:2016屆江蘇省泰州市沿江區(qū)域中考二模數(shù)學(xué)試卷(解析版) 題型:解答題
將平行四邊形紙片ABCD按如圖方式折疊,使點C與A重合,點D落到D′處,折痕為EF.
(1)求證:△ABE≌△AD′F;
(2)連接CF,判斷四邊形AECF是什么特殊四邊形?證明你的結(jié)論.
查看答案和解析>>
科目: 來源:2016屆江蘇省泰州市沿江區(qū)域中考二模數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,AB是⊙O的直徑,BC交⊙O于點D,E是的中點,連接AE交BC于點F,∠ACB=2∠EAB.
(1)求證:AC是⊙O的切線;
(2)若cosC=,AC=6,求BF的長.
查看答案和解析>>
科目: 來源:2016屆江蘇省泰州市沿江區(qū)域中考二模數(shù)學(xué)試卷(解析版) 題型:解答題
類似于平面直角坐標(biāo)系,如圖1,在平面內(nèi),如果原點重合的兩條數(shù)軸不垂直,那么我們稱這樣的坐標(biāo)系為斜坐標(biāo)系.若P是斜坐標(biāo)系xOy中的任意一點,過點P分別作兩坐標(biāo)軸的平行線,與x軸、y軸交于點M、N,如果M、N在x軸、y軸上分別對應(yīng)的實數(shù)是a、b,這時點P的坐標(biāo)為(a,b).
(1)如圖2,在斜坐標(biāo)系xOy中,畫出點A(﹣2,3);
(2)如圖3,在斜坐標(biāo)系xOy中,已知點B(5,0)、C(0,4),且P(x,y)是線段CB上的任意一點,則y與x之間的等量關(guān)系式為 ;
(3)若(2)中的點P在線段CB的延長線上,其它條件都不變,試判斷(2)中的結(jié)論是否仍然成立,并說明理由.
查看答案和解析>>
科目: 來源:2016屆江蘇省泰州市沿江區(qū)域中考二模數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,△ABC中,AB=AC,點P是三角形右外一點,且∠APB=∠ABC.
(1)如圖1,若∠BAC=60°,點P恰巧在∠ABC的平分線上,PA=2,求PB的長;
(2)如圖2,若∠BAC=60°,探究PA,PB,PC的數(shù)量關(guān)系,并證明;
(3)如圖3,若∠BAC=120°,請直接寫出PA,PB,PC的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com