相關(guān)習(xí)題
 0  280123  280131  280137  280141  280147  280149  280153  280159  280161  280167  280173  280177  280179  280183  280189  280191  280197  280201  280203  280207  280209  280213  280215  280217  280218  280219  280221  280222  280223  280225  280227  280231  280233  280237  280239  280243  280249  280251  280257  280261  280263  280267  280273  280279  280281  280287  280291  280293  280299  280303  280309  280317  366461 

科目: 來源: 題型:解答題

4.老師在黑板上寫出下面的一道題:
已知$\sqrt{7}$=a,$\sqrt{70}$=b,用含a,b的代數(shù)式表示$\sqrt{4.9}$.兩位在黑板上分別板書了自己的解答:
同學(xué)甲:$\sqrt{4.9}$=$\sqrt{\frac{49}{10}}=\sqrt{\frac{49×10}{10×10}}$=$\sqrt{\frac{490}{100}}=\frac{{\sqrt{7×70}}}{10}$=$\frac{{\sqrt{7}×\sqrt{70}}}{10}$=$\frac{ab}{10}$.
同學(xué)乙:$\sqrt{4.9}$=$\sqrt{\frac{49}{10}}$=$\sqrt{\frac{49×10}{10×10}}$=$\frac{7\sqrt{10}}{10}$=$\frac{7}{10}$×$\sqrt{\frac{70}{7}}$=$\frac{7}{10}$×$\frac{\sqrt{70}}{\sqrt{7}}$=$\frac{7b}{10a}$.
(1)你認(rèn)為兩位同學(xué)的解答都正確嗎?
(2)同學(xué)并得出的結(jié)果為$\frac{7a}$.老師說是正確的,你知道丙是怎樣做的嗎?請(qǐng)你寫出丙的解答過程.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知x=$\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$,求$\frac{{x}^{2}+x}{{x}^{2}-4x+5}$的值.

查看答案和解析>>

科目: 來源: 題型:解答題

2.若mn<0,試化簡(jiǎn)-$\frac{1}{m}$$\sqrt{8{m}^{2}n}$.

查看答案和解析>>

科目: 來源: 題型:解答題

1.一個(gè)不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),藍(lán)球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是藍(lán)球的概率為$\frac{1}{4}$.
(1)求口袋中黃球的個(gè)數(shù);
(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用樹狀圖法或列表法,求兩次摸出都是紅球的概率;
(3)現(xiàn)規(guī)定:摸到紅球得3分,摸到黃球得2分,摸到藍(lán)球得1分(每次摸后放回),乙同學(xué)在一次摸球游戲中,第一次隨機(jī)摸到一個(gè)紅球第二次又隨機(jī)摸到一個(gè)藍(lán)球,若隨機(jī)再摸一次,求乙同學(xué)一次摸球所得分?jǐn)?shù)之和不低于6分的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

20.閱讀材料:黑白雙雄、縱橫江湖;雙劍合璧,天下無敵.這是武俠小說中常見的描述,其意是指兩人合在一起,取長(zhǎng)補(bǔ)短,威力無比.在二次根式中也有這種相輔相成的“對(duì)子”如:(2+$\sqrt{3}$)(2-$\sqrt{3}$)=1,2+$\sqrt{3}$與2-$\sqrt{3}$的積不含有根號(hào),我們就說這兩個(gè)式子互為有理化因式,其中一個(gè)是另一個(gè)的有理化因式.于是二次根式$\frac{2+\sqrt{3}}{2-\sqrt{3}}$可以這樣解:$\frac{2+\sqrt{3}}{2-\sqrt{3}}=\frac{(2+\sqrt{3})(2+\sqrt{3})}{(2-\sqrt{3})(2-\sqrt{3})}=\frac{7+4\sqrt{3}}{1}=7+4\sqrt{3}$,像這樣,通過分子、分母同乘以一個(gè)式子把分母中的根號(hào)化去或把根號(hào)中的分母化去,叫做分母有理化.
解決問題:①$4+\sqrt{7}$的有理化因式是4-$\sqrt{7}$
②計(jì)算:$\frac{1}{2+\sqrt{3}}+\sqrt{27}-6\sqrt{\frac{1}{3}}$
③計(jì)算:$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+…$+\frac{1}{\sqrt{2015}+\sqrt{2016}}$.

查看答案和解析>>

科目: 來源: 題型:解答題

19.某班到離學(xué)校28千米的國(guó)家森林公園春游,先坐車,速度為36千米/時(shí).下車后以4千米/時(shí)的速度步行到達(dá)目的地,共花了1小時(shí),問他們步行了多長(zhǎng)時(shí)間?

查看答案和解析>>

科目: 來源: 題型:選擇題

18.解方程組$\left\{\begin{array}{l}{2m-4n=6①}\\{4m-5n=18②}\end{array}\right.$的最佳方案是( 。
A.由①得m=3+2n,再代入②B.由②得m=$\frac{9}{2}$+$\frac{5}{4}$n,再代入①
C.由①得n=$\frac{1}{2}m$-$\frac{3}{2}$,再代入②D.由①得2m=6+4n,再代入②

查看答案和解析>>

科目: 來源: 題型:選擇題

17.把方程$\frac{x}{3}$-$\frac{y}{2}$=1寫成用含x的代數(shù)式表示y,以下各式中正確的是( 。
A.y=$\frac{2x-2}{3}$B.y=$\frac{2}{3}$x-$\frac{1}{3}$C.y=$\frac{2}{3}$x-2D.y=2-$\frac{2}{3}$x

查看答案和解析>>

科目: 來源: 題型:選擇題

16.綠豆加工成綠豆芽后,重量比原來增加了7倍,要得到綠豆芽30千克,需要綠豆多少千克?若設(shè)需要綠豆x千克,則可以列出方程( 。
A.7x=30B.x+7x=30C.x+30=7xD.x+7=30

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知x=$\sqrt{10}$-3,請(qǐng)至少用兩種方法求代數(shù)式x2+6x+11的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案