相關(guān)習(xí)題
 0  280701  280709  280715  280719  280725  280727  280731  280737  280739  280745  280751  280755  280757  280761  280767  280769  280775  280779  280781  280785  280787  280791  280793  280795  280796  280797  280799  280800  280801  280803  280805  280809  280811  280815  280817  280821  280827  280829  280835  280839  280841  280845  280851  280857  280859  280865  280869  280871  280877  280881  280887  280895  366461 

科目: 來源: 題型:解答題

15.已知關(guān)于x的方程x2+2x-a+1=0沒有實(shí)數(shù)根,試判斷關(guān)于y的方程y2+ay+a=1是否一定有兩個(gè)不相等的實(shí)數(shù)根,并說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

14.下列說法:
①兩條不相交的直線叫平行線;
②兩條不相交的線段,在同一平面內(nèi)必平行;
③經(jīng)過直線外一點(diǎn)有且只有一條直線與這條直線平行;
④若直線a∥b,a∥c,那么b∥c,
其中錯(cuò)誤的是①②(只填序號(hào))

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖,在平面直角坐標(biāo)系中,直線AB交兩坐標(biāo)軸于A、B兩點(diǎn),OA>OB,且OA、OB的長分別是一元二次方程x2-7x+12=0的兩根.

(1)求cos∠ABO的值;
(2)以線段AB的長為邊作正方形ABCD(如圖所示),對(duì)角線AC、BD交于點(diǎn)E,∠CBD的平分線BF交AC于F,求CF的長;
(3)若點(diǎn)M是y軸上任一點(diǎn),點(diǎn)N是坐標(biāo)平面內(nèi)一點(diǎn),若以A、B、M、N為頂點(diǎn)的四邊形是菱形,請(qǐng)直接寫出N點(diǎn)的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:填空題

12.一元二次方程3x2-4x=0的解是x1=0,x2=$\frac{4}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.在Rt△ABC中,∠C=90°,AC=8,BC=6,將其如圖折疊使點(diǎn)A與點(diǎn)B重合,折痕為DE,連接BE,則tan∠CBE的值為(  )
A.$\frac{24}{7}$B.$\frac{\sqrt{7}}{3}$C.$\frac{7}{24}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,點(diǎn)O、A、B在同一直線上,OC平分∠AOD,OE平分∠FOB,∠COF=∠DOE=90°.
(1)∠COD與∠EOF有什么數(shù)量關(guān)系?說明理由.
答:∠COD=∠EOF,
理由如下:∵∠COF=∠DOE,
∴∠COF-∠DOF=∠DOE-∠DOF.
∴結(jié)論成立.
(2)∠AOC與∠BOF有什么數(shù)量關(guān)系?說明理由.
理由如下:∵OC平分∠AOD,OE平分∠FOB,
∴∠COD=∠AOC,∠BOF=2∠EOF,
∵由(1)得到的∠COD與∠EOF關(guān)系.
∴∠AOC與∠BOF的數(shù)量關(guān)系為2∠AOC=∠BOF.
(3)求∠AOD的度數(shù).

查看答案和解析>>

科目: 來源: 題型:填空題

9.一條直線上有n個(gè)不同的點(diǎn),則該直線上共有線段$\frac{1}{2}$n(n-1)條.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,為了求某條河的寬度,在它的對(duì)岸岸邊任意取一點(diǎn)A,再在河的這邊沿河邊取兩點(diǎn)B、C,使得∠ABC=60°,∠ACB=45°,量得BC的長為30m,求河的寬度(結(jié)果精確到1m).參考數(shù)據(jù):$\sqrt{2}$≈1.414,$\sqrt{3}$≈1.732,$\sqrt{5}$≈2.236.

查看答案和解析>>

科目: 來源: 題型:解答題

7.用6m長的鋁合金型材做一個(gè)形狀如圖所示的矩形窗框,若窗框的面積為1.5m2(鋁合金型材寬度不計(jì)),求該窗框的長和寬各為多少?

查看答案和解析>>

科目: 來源: 題型:解答題

6.計(jì)算
(1)$\sqrt{20}$×$\sqrt{\frac{5}{2}}$
(2)$\frac{\sqrt{12}-\sqrt{18}}{\sqrt{3}}$-2$\sqrt{\frac{2}{3}}$
(3)(1-tan60°)2+$\frac{1}{cos60°}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案