科目: 來源: 題型:
【題目】若二次函數(shù)y=(x+1)(x﹣m)的圖象的對稱軸在y軸的右側(cè),則實數(shù)m的取值范圍是( )
A.m<﹣1
B.﹣1<m<0
C.0<m<1
D.m>1
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AB經(jīng)過點A(﹣4,0)、B(0,4),⊙O的半徑為1(O為坐標(biāo)原點),點P在直線AB上,過點P作⊙O的一條切線PQ,Q為切點,則切線長PQ的最小值為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y=2x+2的圖象與x軸交于A,與y軸交于點C,點B的坐標(biāo)為(a,0),(其中a>0),直線l過動點M(0,m)(0<m<2),且與x軸平行,并與直線AC、BC分別相交于點D、E,P點在y軸上(P點異于C點)滿足PE=CE,直線PD與x軸交于點Q,連接PA.
(1)寫出A、C兩點的坐標(biāo);
(2)當(dāng)0<m<1時,若△PAQ是以P為頂點的倍邊三角形(注:若△HNK滿足HN=2HK,則稱△HNK為以H為頂點的倍邊三角形),求出m的值;
(3)當(dāng)1<m<2時,是否存在實數(shù)m,使CDAQ=PQDE?若能,求出m的值(用含a的代數(shù)式表示);若不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點A(6,0),點B(0,6),動點C在以半徑為3的⊙O上,連接OC,過O點作OD⊥OC,OD與⊙O相交于點D(其中點C、O、D按逆時針方向排列),連接AB.
(1)當(dāng)OC∥AB時,∠BOC的度數(shù)為;
(2)連接AC,BC,當(dāng)點C在⊙O上運動到什么位置時,△ABC的面積最大?并求出△ABC的面積的最大值;
(3)連接AD,當(dāng)OC∥AD時,①求出點C的坐標(biāo);②直線BC是否為⊙O的切線?請作出判斷,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】用水平線和豎起線將平面分成若干個邊長為1的小正方形格子,小正方形的頂點稱為格點,以格點為頂點的多邊形稱為格點多邊形.設(shè)格點多邊形的面積為S,該多邊形各邊上的格點個數(shù)和為a,內(nèi)部的格點個數(shù)為b,則S= a+b﹣1(史稱“皮克公式”).
小明認(rèn)真研究了“皮克公式”,并受此啟發(fā)對正三角形網(wǎng)格中的類似問題進(jìn)行探究:正三角形網(wǎng)格中每個小正三角形面積為1,小正三角形的頂點為格點,以格點為頂點的多邊形稱為格點多邊形,下圖是該正三角形格點中的兩個多邊形:
根據(jù)圖中提供的信息填表:
格點多邊形各邊上的格點的個數(shù) | 格點多邊形內(nèi)部的格點個數(shù) | 格點多邊形的面積 | |
多邊形1 | 8 | 1 | |
多邊形2 | 7 | 3 | |
… | … | … | … |
一般格點多邊形 | a | b | S |
則S與a、b之間的關(guān)系為S=(用含a、b的代數(shù)式表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】某飲料廠以300千克的A種果汁和240千克的B種果汁為原料,配制生產(chǎn)甲、乙兩種新型飲料,已知每千克甲種飲料含0.6千克A種果汁,含0.3千克B種果汁;每千克乙種飲料含0.2千克A種果汁,含0.4千克B種果汁.飲料廠計劃生產(chǎn)甲、乙兩種新型飲料共650千克,設(shè)該廠生產(chǎn)甲種飲料x(千克).
(1)列出滿足題意的關(guān)于x的不等式組,并求出x的取值范圍;
(2)已知該飲料廠的甲種飲料銷售價是每1千克3元,乙種飲料銷售價是每1千克4元,那么該飲料廠生產(chǎn)甲、乙兩種飲料各多少千克,才能使得這批飲料銷售總金額最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=1,BC= ,點O為Rt△ABC內(nèi)一點,連接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求畫圖(保留畫圖痕跡):
以點B為旋轉(zhuǎn)中心,將△AOB繞點B順時針方向旋轉(zhuǎn)60°,得到△A′O′B(得到A、O的對應(yīng)點分別為點A′、O′),并回答下列問題:
∠ABC= , ∠A′BC= , OA+OB+OC= .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC的兩個外角,AD平分∠FAC,CD平分∠ECA. 求證:四邊形ABCD是菱形.
查看答案和解析>>
科目: 來源: 題型:
【題目】為保證中小學(xué)生每天鍛煉一小時,某校開展了形式多樣的體育活動項目,小明對某班同學(xué)參加鍛煉的情況進(jìn)行了統(tǒng)計,并繪制了下面的統(tǒng)計 圖(1)和圖(2).
(1)請根據(jù)所給信息在圖(1)中將表示“乒乓球”項目的圖形補充完整;
(2)扇形統(tǒng)計圖(2)中表示”足球”項目扇形的圓心角度數(shù)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com