科目: 來源: 題型:
【題目】閱讀理解:己知:對于實數(shù)a≥0,b≥0,滿足a+b≥2,當且僅當a = b時,等號成立,此時取得代數(shù)式a+b的最小值.
根據(jù)以上結論,解決以下問題:
(1)拓展:若a>0,當且僅當a=___時,a+有最小值,最小值為____;
(2)應用:
①如圖1,已知點P為雙曲線y=(x>0)上的任意一點,過點P作PA⊥x軸,PB丄y軸,四邊形OAPB的周長取得最小值時,求出點P的坐標以及周長最小值:
②如圖2,已知點Q是雙曲線y=(x>0)上一點,且PQ∥x軸, 連接OP、OQ,當線段OP取得最小值時,在平面內取一點C,使得以0、P、Q、C為頂點的四邊形是平行四邊形,求出點C的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,有一張三角形紙片ABC,∠A=80°,∠B=70°,D是AC邊上一定點,過點D將紙片的一角折疊,使點C落在BC下方C′處,折痕DE與BC交于點E,當AB與∠C′的一邊平行時,∠DEC'=_____度.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,在正方形ABCD中,點P是對角線BD上的一點,點E在AD的延長線上,且PC=PE,PE交CD于點F.
(1)求證:∠PCD=∠PED;
(2)連接EC,求證:EC=AP;
(3)如圖②,把正方形ABCD改成菱形ABCD,其他條件不變,當∠DAB=60°時,請直接寫出線段EC和AP的數(shù)量關系______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b與反比例函數(shù)y=(x>0)的圖像在第一象限交于A、B兩點,點B坐標為(4,2),連接OA、OB,過點B作BD⊥y軸,垂足為D,交OA于點C,且OC=CA.
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)根據(jù)圖像直接說出不等式ax+b-<0的解集為______;
(3)求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,∠MON=90°,點A、B分別在OM、ON上運動(不與點O重合).
(1)如圖①,BC是∠ABN的平分線,BC的反方向延長線與∠BAO的平分線交于點D.
①若∠BAO=60°,則∠D的大小為 度,
②猜想:∠D的度數(shù)是否隨A、B的移動發(fā)生變化?請說明理由.
(2)如圖②,若∠ABC=∠ABN, ∠BAD=∠BAO,則∠D的大小為 度,若∠ABC=∠ABN, ∠BAD=∠BAO,則∠D的大小為 度(用含n的代數(shù)式表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
(1)在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求D,E兩點的坐標;
(2)如圖2,若AE上有一動點P(不與A,E重合)自A點沿AE方向E點勻速運動,運動的速度為每秒1個單位長度,設運動的時間為t秒(0<t<5),過P點作ED的平行線交AD于點M,過點M作AE平行線交DE于點N.求四邊形PMNE的面積S與時間t之間的函數(shù)關系式;當t取何值時,s有最大值,最大值是多少?
(3)在(2)的條件下,當t為何值時,以A,M,E為頂點的三角形為等腰三角形,并求出相應的時刻點M的坐標?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點A、B、C三點分別在反比例函數(shù)y=(x<0)、y=(x>0)、y=(x>0)的圖象上,AC⊥y軸于點E,BC⊥x軸于點F,AB經(jīng)過原點,若S△ABC=5,則k1+k2-2k3的值為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】為提高市民的環(huán)保意識,倡導“節(jié)能減排,綠色出行”,某市計劃在城區(qū)投放一批“共享單車”,這批單車分為A、B兩種不同款型,其中A型車單價400元,B型車單價320元.
(1)今年年初,“共享單車”試點投放在某市中心城區(qū)正式啟動,投放A、B兩種款型的單車共100輛,總價值36800元.求本次試點投放的A型車、B型車的輛數(shù).
(2)試點投放活動得到了廣大市民的認可,該市決定將此項公益活動在整個城區(qū)全面鋪開.按照試點投放中A、B兩車型的數(shù)量比進行投放,且投資總價值不低于184萬元.問整個城區(qū)全面鋪開時投放的A型車、B型車至少多少輛?
查看答案和解析>>
科目: 來源: 題型:
【題目】探究:如圖①,在正方形ABCD中,點P在邊CD上(不與點C、D重合),連結BP.將△BCP繞點C順時針旋轉至△DCE,點B的對應點是點D,旋轉的角度是 度.
應用:將圖①中的BP延長交邊DE于點F,其它條件不變,如圖②.求∠BFE的度數(shù).
拓展:如圖②,若DP=2CP,BC=3,則四邊形ABED的面積是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠BAD, ∠ACD=∠ABC=90°,E、F分別為AC、CD的中點,∠D=62°,則∠BEF的度數(shù)為_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com