科目: 來源: 題型:
【題目】“六一”前夕,某玩具經銷商用去2350元購進A、B、C三種新型的電動玩具共50套,并且購進的三種玩具都不少于10套,設購進A種玩具x套,B種玩具y套,三種電動玩具的進價和售價如表所示
型 號 | A | B | C |
進價(元/套) | 40 | 55 | 50 |
售價(元/套) | 50 | 80 | 65 |
(1)用含x、y的代數(shù)式表示購進C種玩具的套數(shù);
(2)求y與x之間的函數(shù)關系式;
(3)假設所購進的這三種玩具能全部賣出,且在購銷這種玩具的過程中需要另外支出各種費用200元.
①求出利潤P(元)與x(套)之間的函數(shù)關系式;②求出利潤的最大值,并寫出此時三種玩具各多少套.
查看答案和解析>>
科目: 來源: 題型:
【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.
(1)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;
(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2,并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?
查看答案和解析>>
科目: 來源: 題型:
【題目】小亮媽媽下崗后開了一家糕點店,現(xiàn)有10.2千克面粉,10.2千克雞蛋,計劃加工一般糕點和精制糕點兩種產品共50盒.
⑴有哪幾種符合題意的加工方案?請你幫忙設計出來;
⑵若銷售一般糕點和精制糕點的利潤分別為1.5元/盒和2元/盒,試問哪種方案使小亮媽媽可獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】四張質地、大小、背面完全相同的卡片上,正面分別畫有平行四邊形、矩形、等腰三角形、菱形四個圖案.現(xiàn)把它們的正面向下隨機擺放在桌面上,從中任意抽出一張,則抽出的卡片正面圖案是中心對稱圖形的概率為___________________.
查看答案和解析>>
科目: 來源: 題型:
【題目】.如圖①,ABC中,沿BAC的平分線AB1折疊,剪掉重疊部分;將余下部分沿B1A1C的平分線A1B2折疊,剪掉重疊部分;……將余下部分沿BnAnC(n為正整數(shù))的平分線AnBn1折疊,點Bn與點C重合.無論折疊多少次,只要最后一次點Bn與點C恰好重合,我們就稱BAC是ABC的好角.
小麗展示了確定BAC是ABC的好角的兩種情形.
情形一:如圖②,沿等腰三角形ABC頂角BAC是平分線AB1折疊,點B與點C重合;
情形二:如圖③,沿ABC的BAC的平分線AB1折疊,剪掉重疊部分;將余下的部分沿B1A1C的平分線A1B2折疊,此時點B1與點C重合.
(探究發(fā)現(xiàn))
⑴如圖③,ABC中,B2C,經過兩次折疊,BAC是不是ABC的好角? .(填:“是”或“不是”)
⑵歸納猜想:(i)如圖④,小麗經過三次折疊發(fā)現(xiàn)了BAC是ABC的好角,請?zhí)骄?/span>B與C(BC)之間的等量關系,并說明理由.
(ii)根據(jù)以上內容猜想:若經過n(n為正整數(shù))次折疊BAC是ABC的好角,則B與C(BC)之間的等量關系為 .(直接寫出結論)
⑶小麗找到一個三角形,三個角分別為15,60,105,發(fā)現(xiàn)60和105的兩個角都是此三角形的好角,請你完成,如果一個三角形的最小角是10,試求出三角形另外兩個角的度數(shù),使該三角形的三個角均是此三角形的好角.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD邊長為4,點P從點A運動到點B,速度為1,點Q沿B﹣C﹣D運動,速度為2,點P、Q同時出發(fā),則△BPQ的面積y與運動時間t(t≤4)的函數(shù)圖象是( 。
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A(﹣1,0),B(2,0),交y軸于C(0,﹣2),過A,C畫直線.
(1)求二次函數(shù)的解析式;
(2)點P在x軸正半軸上,且PA=PC,求OP的長;
(3)點M在二次函數(shù)圖象上,以M為圓心的圓與直線AC相切,切點為H.
①若M在y軸右側,且△CHM∽△AOC(點C與點A對應),求點M的坐標;
②若⊙M的半徑為,求點M的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】在ABCD中,點P和點Q是直線BD上不重合的兩個動點,AP∥CQ,AD=BD.
(1)如圖①,求證:BP+BQ=BC;
(2)請直接寫出圖②,圖③中BP、BQ、BC三者之間的數(shù)量關系,不需要證明;
(3)在(1)和(2)的條件下,若DQ=2,DP=6,則BC= .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知ABC在平面直角坐標系內,滿足:點A在y軸正半軸上移動,點B在x軸負半軸上移動,點C為y軸右側一動點.
點A0,a和點Bb,0坐標恰好滿足:,直接寫出a,b的值.
⑵如圖①,當點C在第四象限時,若AM、AO將BAC三等分,BM、BO將ABC三等分,在A、B、C的運動過程中,試求出C和M的關系.
⑶探究:
(i)如圖②,當點C在第四象限時,若AM平分CAO,BM平分CBO,在A、B、C的運動過程中,C和M是否存在確定的數(shù)量關系?若存在,請證明你的結論;若不存在,請說明理由.
(ii)如圖③,當點C在第一象限時,且在(i)中的條件不變的前提下,C和M又有何數(shù)量關系?證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com