科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=60°.在△ABC的外側(cè)作直線AP,點(diǎn)C關(guān)于直線AP的對稱點(diǎn)為D,連接AD,BD.
(1)依據(jù)題意補(bǔ)全圖形;
(2)當(dāng)∠PAC等于多少度時(shí),AD∥BC?請說明理由;
(3)若BD交直線AP于點(diǎn)E,連接CE,求∠CED的度數(shù);
(4)探索:線段CE,AE和BE之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC,BD相交于點(diǎn)O,分別延長OA,OC到點(diǎn)E,F,使AE=CF,依次連接B,F,D,E各點(diǎn).
(1)求證:△BAE≌△BCF;
(2)若∠ABC=40°,則當(dāng)∠EBA= 時(shí),四邊形BFDE是正方形.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是邊BC上的一點(diǎn),DE⊥AB,DF⊥AC,垂足分別是E、F,EF∥BC.
(1)求證:△BDE≌△CDF;
(2)若BC=2AD,求證:四邊形AEDF是正方形.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖:已知等邊△ABC中,D是AC的中點(diǎn),E是BC延長線上的一點(diǎn),且CE=CD,DM⊥BC,垂足為M.
(1)求∠E的度數(shù).
(2)求證:M是BE的中點(diǎn).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,圖形中每一小格正方形的邊長為1,已知△ABC
(1)AC的長等于 .(結(jié)果保留根號)
(2)將△ABC向右平移2個(gè)單位得到△A′B′C′,則A點(diǎn)的對應(yīng)點(diǎn)A′的坐標(biāo)是 ;
(3)畫出將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得到△A1B1C1,并寫出A點(diǎn)對應(yīng)點(diǎn)A1的坐標(biāo)?
查看答案和解析>>
科目: 來源: 題型:
【題目】平行四邊形ABCD的對角線AC和BD交于O點(diǎn),分別過頂點(diǎn)B,C作兩對角線的平行線交于點(diǎn)E,得平行四邊形OBEC.
(1)如果四邊形ABCD為矩形(如圖),四邊形OBEC為何種四邊形?請證明你的結(jié)論;
(2)當(dāng)四邊形ABCD是 形時(shí),四邊形OBEC是正方形.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,DA⊥AB,AD=AB,EA⊥AC,AE=AC.
(1)試說明△ACD≌△AEB;
(2)若∠ACB=90°,連接CE,
①說明EC平分∠ACB;
②判斷DC與EB的位置關(guān)系,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,△ABC(如圖).
(1)利用尺規(guī)按下列要求作圖(保留作圖痕跡,不寫作法):
①作∠BAC的平分線AD,交BC于點(diǎn)D;
②作AB邊的垂直平分線EF,分別交AD,AB于點(diǎn)E,F.
(2)連接BE,若∠ABC=60°,∠C=40°,求∠AEB的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一個(gè)均勻的轉(zhuǎn)盤被平均分成9等份,分別標(biāo)有1,2,3,4,5,6,7,8,9這9個(gè)數(shù)字.轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字.
小亮和小芳兩人玩轉(zhuǎn)盤游戲,對游戲規(guī)則,小芳提議:若轉(zhuǎn)岀的數(shù)字是3的倍數(shù),小芳獲勝,若轉(zhuǎn)出的數(shù)字是4的倍數(shù),小亮獲勝.
(1)你認(rèn)為小芳的提議合理嗎?為什么?
(2)利用這個(gè)轉(zhuǎn)盤,請你為他倆設(shè)計(jì)一種對兩人都公平的游戲規(guī)則.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)120°得到△AB'C'(點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)B',點(diǎn)C的對應(yīng)點(diǎn)是點(diǎn)C'),連接BB',若AC'∥BB',則∠C'AB'的度數(shù)為( )
A.20°B.30°C.40°D.50°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com