科目: 來源: 題型:
【題目】如圖,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC與BD相交于點(diǎn)O.
(1)求證:△ABC≌△DCB;
(2)△OBC是何種三角形?證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知:∠MON=30°,點(diǎn)A1、A2、A3…在射線ON上,點(diǎn)B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A7B7A8的邊長(zhǎng)為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,小明家的住房結(jié)構(gòu)平面圖,(單位:米),裝修房子時(shí),他打算將臥室以外的部分都鋪上地磚,
(1)若鋪地磚的價(jià)格為80元/平方米,那么購(gòu)買地磚需要花多少錢?(用代數(shù)式表示);
(2)已知房屋的高度為3米,現(xiàn)在想要在客廳和臥室的墻壁上貼上壁紙,那么需要多少平方米的壁紙(門窗所占面積忽略不計(jì))?(用代數(shù)式表示);
(3)若x=4,y=5,且每平方米地磚的價(jià)格是90元,每平方米壁紙的價(jià)格是15元,那么,在這兩項(xiàng)裝修中,小明共要花費(fèi)多少錢?(各種小的損耗不計(jì)).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一塊直角三角形的紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于( ).
A. 2 cm B. 4 cm C. 3 cm D. 5 cm
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,如圖,AB∥CD,直線EF分別交AB、CD于點(diǎn)E、F,EG平分∠AEF,FH平分∠EFD.求證:EG∥FH.
請(qǐng)完成以下證明過程:
證明:∵AB∥CD(已知)
∴∠AEF=∠EFD(__________________)
∵EG平分∠AEF,FH平分∠EFD(__________)
∴∠___=∠AEF,∠___= ∠EFD(____________)
∴∠_____=∠______(等量代換)
∴EG∥FH(__________________).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,CD平分∠ACB交⊙O于D,過點(diǎn)D作PQ∥AB分別交CA、CB延長(zhǎng)線于P、Q,連接BD.
(1)求證:PQ是⊙O的切線;
(2)求證:BD2=ACBQ;
(3)若AC、BQ的長(zhǎng)是關(guān)于x的方程的兩實(shí)根,且tan∠PCD=,求⊙O的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,點(diǎn)D在邊AB上,連結(jié)CD,將線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至CE位置,連接AE.
(1)求證:AB⊥AE;
(2)若,求證:四邊形ADCE為正方形.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣4,4),點(diǎn)B的坐標(biāo)為(0,2).
(1)求直線AB的解析式;
(2)如圖,以點(diǎn)A為直角頂點(diǎn)作∠CAD=90°,射線AC交x軸于點(diǎn)C,射線AD交y軸于點(diǎn)D.當(dāng)∠CAD繞著點(diǎn)A旋轉(zhuǎn),且點(diǎn)C在x軸的負(fù)半軸上,點(diǎn)D在y軸的負(fù)半軸上時(shí),OC﹣OD的值是否發(fā)生變化?若不變,求出它的值;若變化,求出它的變化范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線與兩軸分別交于A、B、C三點(diǎn),已知點(diǎn)A(一3,O),B(1,0).點(diǎn)P在第二象限內(nèi)的拋物線上運(yùn)動(dòng),作PD上軸子點(diǎn)D,交直線AC于點(diǎn)E.
(1)
(2)過點(diǎn)P作PF⊥AC于點(diǎn)F.求當(dāng)△PEF的周長(zhǎng)取最大值時(shí)點(diǎn)P的坐標(biāo).
(3)連接AP,并以AP為邊作等腰直角△APQ,當(dāng)頂點(diǎn)Q恰好落在拋物線的對(duì)稱軸上時(shí),求對(duì)應(yīng)的P點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com