科目: 來源: 題型:
【題目】用雙十字相乘法分解因式
例:20x2+9xy-18y2-18x+33y-14。
∵4×6+5×(-3)=9,4×(-7)+5×2=-13,-3×(-7)+2×6=33,
∴20x2+9xy-18y2-18x+33y-14=(4x-3y+2)(5x+6y-7)。
雙十字相乘法的理論根據(jù)是多項式的乘法,在使用雙十字相乘法時,應(yīng)注意它帶有試驗性質(zhì),很可能需要經(jīng)過多次試驗才能得到正確答案。
分解因式6x2-5xy-6y2-2xz-23yz-20z2=
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標中,拋物線y=ax2-2ax-3a(a≠0)與x軸交于A、B(A在B的左側(cè)),與y軸交于點C,且OC=3OA.
(1)如圖(1)求拋物線的解析式;
(2)如圖(2)動點P從點O出發(fā),沿y軸正方向以每秒1個單位的速度移動,點D是拋物線頂點,連接PB、PD、BD,設(shè)點P運動時間為t(單位:秒),△PBD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)如圖(3)在(2)的條件下,延長BP交拋物線于點Q,過點O作OE⊥BQ,垂足為E,連接CE、CB,若CE=CB,求t值,并求出此時的Q點坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OE平分∠AOD,OF⊥OC,
(1)圖中∠AOF的余角是 (把符合條件的角都填出來);
(2)如果∠AOC=160°,那么根據(jù) 可得∠BOD= 度;
(3)如果∠1=32°,求∠2和∠3的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)校需要置換一批推拉式黑板,經(jīng)了解,現(xiàn)有甲、乙兩廠家報價均為200元/米2,且提供的售后服務(wù)完全相同,為了促銷,甲廠家表示,每平方米都按七折計費;乙廠家表示,如果黑板總面積不超過20米2,每平方米都按九折計費,超過20米2,那么超出部分每平方米按六折計費.假設(shè)學(xué)校需要置換的黑板總面積為x米2.
(1)請分別寫出甲、乙兩廠家收取的總費用y(元)與x(米2)之間的函數(shù)關(guān)系式;
(2)請你結(jié)合函數(shù)圖象的知識幫助學(xué)校在甲、乙兩廠家中,選擇一家收取總費用較少的.
查看答案和解析>>
科目: 來源: 題型:
【題目】用“”規(guī)定一種新運算:對于任意有理數(shù)a和b,規(guī)定ab=ab+2ab+a. 如:13=1×3+2×1×3+1=16
(1)求3(﹣1)的值;
(2)若(a+1)2=36,求a的值;
(3)若m=2x,n=(x)3(其中x為有理數(shù)),試比較m、n的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:關(guān)于x的函數(shù)y=kx2+k2x﹣2的圖象與y軸交于點C,
(1)當k=﹣2時,求圖象與x軸的公共點個數(shù);
(2)若圖象與x軸有一個交點為A,當△AOC是等腰三角形時,求k的值.
(3)若x≥1時函數(shù)y隨著x的增大而減小,求k的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,有一塊Rt△ABC的紙片,∠ABC=900,AB=6,BC=8,將△ABC沿AD折疊,使點B落在AC上的E處,則BD的長為( )
A.3B.4C.5D.6
查看答案和解析>>
科目: 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,了解學(xué)生整體聽寫能力,某校組織全校1000名學(xué)生進行一次漢字聽寫大賽初賽,從中抽取部分學(xué)生的成績進行統(tǒng)計分析,根據(jù)測試成績繪制出了頻數(shù)分布表和頻數(shù)分布直方圖:
分組/分 | 頻數(shù) | 頻率 |
50≤x<60 | 6 | 0.12 |
60≤x<70 | a | 0.28 |
70≤x<80 | 16 | 0.32 |
80≤x<90 | 10 | 0.20 |
90≤x≤100 | c | b |
合計 | 50 | 1.00 |
(1)表中的a=______,b=______,c=______;
(2)把上面的頻數(shù)分布直方圖補充完整,并畫出頻數(shù)分布折線圖;
(3)如果成績達到90及90分以上者為優(yōu)秀,可推薦參加進入決賽,那么請你估計該校進入決賽的學(xué)生大約有多少人.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,弦AD⊥BC,垂足為H,連接OB.
(1)如圖1,求證:∠DAC=∠ABO;
(2)如圖2,在弧AC上取點F,使∠CAF=∠BAD,在弧AB取點G,使AG∥OB,若∠BAC=600,
求證:GF=GD;
(3)如圖3,在(2)的條件下,AF、BC的延長線相交于點E,若AF:FE=1:9,求sin∠ADG的值。
查看答案和解析>>
科目: 來源: 題型:
【題目】某校在踐行“社會主義核心價值觀”演講比賽中,對名列前20名的選手的綜合分數(shù)m進行分組統(tǒng)計,結(jié)果如表所示:
組號 | 分組 | 頻數(shù) |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值;
(2)若用扇形圖來描述,求分數(shù)在8≤m<9內(nèi)所對應(yīng)的扇形圖的圓心角大。
(3)將在第一組內(nèi)的兩名選手記為:A1、A2,在第四組內(nèi)的兩名選手記為:B1、B2,從第一組和第四組中隨機選取2名選手進行調(diào)研座談,求第一組至少有1名選手被選中的概率(用樹狀圖或列表法列出所有可能結(jié)果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com