科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的邊OA=6,OC=2,一條動直線l分別與BC、OA將于點E、F,且將矩形OABC分為面積相等的兩部分,則點O到動直線l的距離的最大值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,兩點分別是軸和軸正半軸上兩個動點,以三點為頂點的矩形的面積為24,反比例函數(shù)(為常數(shù)且)的圖象與矩形的兩邊分別交于點.
(1)若且點的橫坐標為3.
①點的坐標為 ,點的坐標為 (不需寫過程,直接寫出結(jié)果);
②在軸上是否存在點,使的周長最。咳舸嬖,請求出的周長最小值;若不存在,請說明理由.
(2)連接,在點的運動過程中,的面積會發(fā)生變化嗎?若變化,請說明理由,若不變,請用含的代數(shù)式表示出的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,AC是對角線,AB=8cm,BC=6cm.點P從點A出發(fā),沿AC方向勻速運動,速度為2cm/s,同時,點Q從點B出發(fā),沿BA方向勻速運動,速度為2cm/s.過點P作PM⊥AD于點M,連接PQ,設(shè)運動時間為t(s)(0<t<4),解答下列問題:
(1)當(dāng)t為何值時,點Q在線段AC的中垂線上;
(2)寫出四邊形PQAM的面積為S(cm2)與時間t的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使S四邊形PQAM:S矩形ABCD=9:50?若存在,求出t的值;若不存在,請說明理由;
(4)當(dāng)t為何值時,△APQ與△ADC相似.
查看答案和解析>>
科目: 來源: 題型:
【題目】在一個3×3的方格中填寫了9個數(shù)字,使得每行、每列、每條對角線上的三個數(shù)之和相等,得到的3×3的方格稱為一個三階幻方.
(1)在圖1中空格處填上合適的數(shù)字,使它構(gòu)成一個三階幻方;
(2)如圖2的方格中填寫了一些數(shù)和字母,當(dāng)x+y的值為多少時,它能構(gòu)成一個三階幻方.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形的對角線交于點,直角三角形繞點按逆時針旋轉(zhuǎn),
(1)若直角三角形繞點逆時針轉(zhuǎn)動過程中分別交兩邊于兩點
①求證:;
②連接,那么有什么樣的關(guān)系?試說明理由
(2)若正方形的邊長為2,則正方形與兩個圖形重疊部分的面積為多少?(不需寫過程直接寫出結(jié)果)
查看答案和解析>>
科目: 來源: 題型:
【題目】(本題滿分6分)某公司調(diào)查某中學(xué)學(xué)生對其環(huán)保產(chǎn)品的了解情況,隨機抽取該校部分學(xué)生進行問卷,結(jié)果分“非常了解”、“比較了解”、“一般了解”、“不了解”四種類型,分別記為A、B、C、D.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.
(1)本次問卷共隨機調(diào)查了 名學(xué)生,扇形統(tǒng)計圖中m= .
(2)請根據(jù)數(shù)據(jù)信息補全條形統(tǒng)計圖;
(3)若該校有1000名學(xué)生,估計選擇“非常了解”、“比較了解”共約有多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠在生產(chǎn)過程中要消耗大量電能,消耗每千度電產(chǎn)生利潤與電價是一次函數(shù)關(guān)系,經(jīng)過測算,工廠每千度電產(chǎn)生利潤y(元/千度))與電價x(元/千度)的函數(shù)圖象如圖:
(1)請求出y與x之間的函數(shù)關(guān)系式;
(2)為了實現(xiàn)節(jié)能減排目標,有關(guān)部門規(guī)定,該廠電價x(元/千度)與每天用電量m(千度)的函數(shù)關(guān)系為x=20m+500,且該工廠每天用電量不超過50千度,為了獲得最大利潤w,工廠每天應(yīng)安排使用多少度電?工廠每天消耗電產(chǎn)生利潤最大是多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別在邊AB,BC上,∠ADE=∠CDF.
(1)求證:AE=CF;
(2)連接DB交EF于點O,延長OB至G,使OG=OD,連接EG,F(xiàn)G,判斷四邊形DEGF是否是菱形,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在電線桿CD處引拉線CE,CF固定電線桿,拉線CE和地面所成的角∠CED=67°,在離電線桿6米的B處安置高為1.5米的測角儀AB,在A處測得電線桿上C處的仰角為37°,求拉線CE的長(參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈,sin37°≈,cos37°≈,tsn37°≈).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com