科目: 來源: 題型:
【題目】我們定義:如圖1,在△ABC看,把AB點A順時針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉(zhuǎn)β得到AC',連接B'C'.當α+β=180°時,我們稱△A'B'C'是△ABC的“旋補三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”.
特例感知:
(1)在圖2,圖3中,△AB'C'是△ABC的“旋補三角形”,AD是△ABC的“旋補中線”.
①如圖2,當△ABC為等邊三角形時,AD與BC的數(shù)量關(guān)系為AD= BC;
②如圖3,當∠BAC=90°,BC=8時,則AD長為 .
猜想論證:
(2)在圖1中,當△ABC為任意三角形時,猜想AD與BC的數(shù)量關(guān)系,并給予證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】棱長為a的正方體,擺放成如圖所示的形狀,動手試一試,并回答下列問題:
(1)如果這一物體擺放了如圖所示的上下三層,由幾個正方體構(gòu)成?
(2)如圖形所示物體的表面積是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,直線與軸交于點,與軸交于點,與反比例函的圖象交于點,且.
(1)求點的坐標和反比例函數(shù)的解析式;
(2)點在軸上,反比例函數(shù)圖象上存在點,使得四邊形為平行四邊形,求點M的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某日的錢塘江觀潮信息如圖:
按上述信息,小紅將“交叉潮”形成后潮頭與乙地之間的距離s(千米)與時間t(分鐘)的函數(shù)關(guān)系用圖3表示,其中:“11:40時甲地‘交叉潮’的潮頭離乙地12千米”記為點A(0,12),點B坐標為(m,0),曲線BC可用二次函數(shù)s=t2+bt+c(b,c是常數(shù))刻畫.
(1)求m的值,并求出潮頭從甲地到乙地的速度;
(2)11:59時,小紅騎單車從乙地出發(fā),沿江邊公路以0.48千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?
(3)相遇后,小紅立即調(diào)轉(zhuǎn)車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為0.48千米/分,小紅逐漸落后.問小紅與潮頭相遇到落后潮頭1.8千米共需多長時間?(潮水加速階段速度v=v0+(t﹣30),v0是加速前的速度).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,過點O作.
(1)若,求的度數(shù);
(2)已知射線平分,射線平分.
①若,求的度數(shù);
②若,則的度數(shù)為 (直接填寫用含的式子表示的結(jié)果).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點在數(shù)軸上對應(yīng)的數(shù)為,點對應(yīng)的數(shù)為,且.
則________,________;并將這兩個數(shù)在數(shù)軸上所對應(yīng)的點,表示出來;
數(shù)軸上在點右邊有一點到、兩點的距離和為,若點的數(shù)軸上所對應(yīng)的數(shù)為,求的值;
若點,點同時沿數(shù)軸向正方向運動,點運動的速度為單位/秒,點運動的速度為單位/秒,若,求運動時間的值.
(溫馨提示:、之間距離記作,點、在數(shù)軸上對應(yīng)的數(shù)分別為、,則.)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)與函數(shù)的圖象交于,兩點,軸于C,軸于D
求k的值;
根據(jù)圖象直接寫出的x的取值范圍;
是線段AB上的一點,連接PC,PD,若和面積相等,求點P坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,小王在校園上的A處正面觀測一座教學(xué)樓墻上的大型標牌,測得標牌下端D處的仰角為30°,然后他正對大樓方向前進5m到達B處,又測得該標牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標牌的上端與樓房的頂端平齊.求此標牌上端與下端之間的距離(≈1.732,結(jié)果精確到0.1m).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=120°.將一直角三角形的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O逆時針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,問:直線ON是否平分∠AOC?請說明理由;
(2)將圖1中的三角板繞點O按每秒5°的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為 (直接寫出結(jié)果);
(3)將圖1中的三角板繞點O順時針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,OD為∠BOM平分線.請?zhí)骄浚骸?/span>MOD與∠NOC之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設(shè)計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.
(1)若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;
(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com