科目: 來源: 題型:
【題目】觀察下面的點陣圖和相應(yīng)的等式,探究其中的規(guī)律:
(1)在④后面的橫線上寫出相應(yīng)的等式:
①1=12;②1+3=22;③1+3+5=32;④ ;⑤1+3+5+7+9=52;…
(2)請寫出第n個等式;
(3)利用(2)中的等式,計算21+23+25+…+99.
查看答案和解析>>
科目: 來源: 題型:
【題目】小明同學騎自行車去濱海港郊游,中途休息了一段時間。如圖表示他離家的距離y(千米)與所用的時間s(小時)之間關(guān)系的函數(shù)圖像
(1)根據(jù)圖像回答:小明家離濱海港 千米,小明到達濱海港時用了 小時;
(2)直線CD的函數(shù)解析式為 ;
(3)小明出發(fā)幾小時,離家12千米?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P時直線AC下方拋物線上的動點.
(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某蘋果生產(chǎn)基地,用30名工人進行采摘或加工蘋果,每名工人只能做其中一項工作.蘋果的銷售方式有兩種:一種是可以直接出售,另一種是可以將采摘的蘋果加工成罐頭出售.直接出售每噸獲利4 000元,加工成罐頭出售每噸獲利10 000元.采摘的工人每人可以采摘蘋果0.4噸,加工罐頭的工人每人可加工蘋果0.3噸.采摘的蘋果一部分用于加工罐頭,其余直接出售.設(shè)有x名工人進行蘋果采摘,罐頭和蘋果全部售出后,總利潤為y元.
(1)加工成罐頭的蘋果數(shù)量為 噸,直接出售的蘋果數(shù)量為 噸.(用含x的代數(shù)式表示)
(2)求y與x之間的函數(shù)關(guān)系式,并求出自變量的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】暑假到了,即將迎來手機市場的銷售旺季.某商場銷售甲、乙兩種品牌的智能手機,這兩種手機的進價和售價如下表所示:
甲 | 乙 | |
進價(元/部) | 4000 | 2500 |
售價(元/部) | 4300 | 3000 |
該商場計劃投入15.5萬元資金,全部用于購進兩種手機若干部,期望全部銷售后可獲毛利潤不低于2萬元.(毛利潤=(售價﹣進價)×銷售量)
(1)若商場要想盡可能多的購進甲種手機,應(yīng)該安排怎樣的進貨方案購進甲乙兩種手機?
(2)通過市場調(diào)研,該商場決定在甲種手機購進最多的方案上,減少甲種手機的購進數(shù)量,增加乙種手機的購進數(shù)量.已知乙種手機增加的數(shù)量是甲種手機減少的數(shù)量的2倍,而且用于購進這兩種手機的總資金不超過16萬元,該商場怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于函數(shù)y=-x+3,下列說法錯誤的是( )
A.圖象經(jīng)過點(2,2)B.y隨著x的增大而減小
C.圖象與y軸的交點是(6,0)D.圖象與坐標軸圍成的三角形面積是9
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知平行四邊形OABC的三個頂點A、B、C在以O為圓心的半圓上,過點C作CD⊥AB,分別交AB、AO的延長線于點D、E,AE交半圓O于點F,連接CF.
(1)判斷直線DE與半圓O的位置關(guān)系,并說明理由;
(2)①求證:CF=OC;
②若半圓O的半徑為12,求陰影部分的周長.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于給定的兩個“函數(shù),任取自變量x的一個值,當x<1時,它們對應(yīng)的函數(shù)值互為相反數(shù);當x≥1時,它們對應(yīng)的函數(shù)值相等,我們稱這樣的兩個函數(shù)互為相關(guān)函數(shù).例如:一次函數(shù)y=x-4,它的相關(guān)函數(shù)為.
(1)一次函數(shù)y= -x+5的相關(guān)函數(shù)為______________.
(2)已知點A(b-1,4),點B坐標(b+3,4),函數(shù)y=3x-2的相關(guān)函數(shù)與線段AB有且只有一個交點,求b的取值范圍.
(3)當b+1≤x≤b+2時,函數(shù)y=-3x+b-2的相關(guān)函數(shù)的最小值為3,求b的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面材料:數(shù)學課上,老師出示了這祥一個問題:
如圖,在正方形ABCD中,點F在AB上,點E在BC延長線上。且AF=CE,連接EF,過點D作DH⊥FE于點H,連接CH并延長交BD于點0,∠BFE=75°.求的值.某學習小組的同學經(jīng)過思考,交流了自己的想法:
小柏:“通過觀察和度量,發(fā)現(xiàn)點H是線段EF的中點”。
小吉:“∠BFE=75°,說明圖形中隱含著特殊角”;
小亮:“通過觀察和度量,發(fā)現(xiàn)CO⊥BD”;
小剛:“題目中的條件是連接CH并延長交BD于點O,所以CO平分∠BCD不是己知條件。不能由三線合一得到CO⊥BD”;
小杰:“利用中點作輔助線,直接或通過三角形全等,就能證出CO⊥BD,從而得到結(jié)論”;……;
老師:“延長DH交BC于點G,若刪除∠BFB=75°,保留原題其余條件,取AD中點M,連接MH,如果給出AB,MH的值。那么可以求出GE的長度”.
請回答:(1)證明FH=EH;
(2)求的值;
(3)若AB=4.MH=,則GE的長度為_____________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E.
(1)求證:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com