科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=﹣x2+2bx﹣3的對稱軸為直線x=2.
(1)求b的值;
(2)在y軸上有一動點P(0,m),過點P作垂直y軸的直線交拋物線于點A(x1,y1),B(x2,y2),其中x1<x2.
①當x2﹣x1=3時,結合函數(shù)圖象,求出m的值;
②把直線PB下方的函數(shù)圖象,沿直線PB向上翻折,圖象的其余部分保持不變,得到一個新的圖象W,新圖象W在0≤x≤5時,﹣4≤y≤4,求m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,點P從點B出發(fā),沿B→C→A以每秒1厘米的速度勻速運動到點A.設點P的運動時間為x秒,B、P兩點間的距離為y厘米.
小新根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行了探究.
下面是小新的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:
x(s) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
y(cm) | 0 | 1.0 | 2.0 | 3.0 | 2.7 | 2.7 | m | 3.6 |
經(jīng)測量m的值是(保留一位小數(shù)).
(2)建立平面直角坐標系,描出表格中所有各對對應值為坐標的點,畫出該函數(shù)的圖象;
(3)結合畫出的函數(shù)圖象,解決問題:在曲線部分的最低點時,在△ABC中畫出點P所在的位置.
查看答案和解析>>
科目: 來源: 題型:
【題目】一輛超市配送車從倉庫O出發(fā),向東走了4.5km到達超市A,繼續(xù)走0.5km到達超市B,然后向西走9.5km到達超市C,最后回到倉庫O.解答下列問題:
(1)以倉庫O為原點,以向東為正方向,用1個單位長度表示1km,在所給的直線上畫出數(shù)軸,并在數(shù)軸上表示出A、B、C的位置.
(2)結合數(shù)軸計算:超市C在超市A的什么方向,距超市A多遠?
(3)若該配送車每千米耗油0.1升,在這次送貨回倉過程中共耗油多少升?
解:(1)
查看答案和解析>>
科目: 來源: 題型:
【題目】近日,嶗山區(qū)教體局對參加2018年嶗山區(qū)禁毒知識競賽的2500名初中學生的初試成績(成績均為整數(shù))進行一次抽樣調查,所得數(shù)據(jù)如下表:
成績分組 | 60.5~70.5 | 70.5~80.5 | 80.5~90.5 | 90.5~100.5 |
頻數(shù) | 50 | 150 | 200 | 100 |
(1)抽取樣本的總人數(shù);
(2)根據(jù)表中數(shù)據(jù),補全圖中頻數(shù)分布直方圖;
(3)若規(guī)定初試成績在90分以上(不包括90分)的學生進入決賽,則全區(qū)進入決賽的初中學生約有多少人.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平行四邊形紙片ABCD中,AB=3,將紙片沿對角線AC對折,BC邊與AD邊交于點E,此時,△CDE恰為等邊三角形,則圖中重疊部分的面積為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,以AB為直徑作⊙O,過點A作⊙O的切線AC,連結BC,交⊙O于點D,點E是BC邊的中點,連結AE.
(1)求證:∠AEB=2∠C;
(2)若AB=6,,求DE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC中,∠ABC=∠ACB,D為射線CB上一點(不與C、B重合),點E為射線CA上一點,∠ADE=∠AED.設∠BAD=α,∠CDE=β.
(1)如圖(1),
①若∠BAC=40°,∠DAE=30°,則α= ,β= .
②寫出α與β的數(shù)量關系,并說明理由;
(2)如圖(2),當D點在BC邊上,E點在CA的延長線上時,其它條件不變,寫出α與β的數(shù)量關系,并說明理由.
(3)如圖(3),D在CB的延長線上,根據(jù)已知補全圖形,并直接寫出α與β的關系式.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀材料:若,求m、n的值.
解: ,
,
,
.
根據(jù)你的觀察,探究下面的問題:
(1)己知,求的值.
(2)已知△ABC的三邊長a、b、c都是正整數(shù),且滿足,求邊c的最大值.
(3) 若己知,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解某區(qū)初二年級數(shù)學學科期末質量監(jiān)控情況,進行了抽樣調查,過程如下,請將有關問題補充完整.
收集數(shù)據(jù):隨機抽取甲乙兩所學校的20名學生的數(shù)學成績進行分析:
甲 | 91 | 89 | 77 | 86 | 71 | 31 | 97 | 93 | 72 | 91 |
81 | 92 | 85 | 85 | 95 | 88 | 88 | 90 | 44 | 91 | |
乙 | 84 | 93 | 66 | 69 | 76 | 87 | 77 | 82 | 85 | 88 |
90 | 88 | 67 | 88 | 91 | 96 | 68 | 97 | 59 | 88 |
整理、描述數(shù)據(jù):按如下數(shù)據(jù)段整理、描述這兩組數(shù)據(jù)
分段 學校 | 30≤x≤39 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
乙 |
|
|
|
|
|
|
|
分析數(shù)據(jù):兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:
統(tǒng)計量 學校 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 81.85 | 88 | 91 | 268.43 |
乙 | 81.95 | 86 | m | 115.25 |
經(jīng)統(tǒng)計,表格中m的值是 .
得出結論:
a若甲學校有400名初二學生,估計這次考試成績80分以上人數(shù)為 .
b可以推斷出 學校學生的數(shù)學水平較高,理由為 .(至少從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在□ABCD中,BF平分∠ABC交AD于點F,AE⊥BF于點O,交BC于點E,連接EF.
(1)求證:四邊形ABEF是菱形;
(2)連接CF,若∠ABC=60°,AB= 4,AF =2DF,求CF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com