科目: 來源: 題型:
【題目】一組正方形按如圖所示的方式放置,其中頂點B1在y軸上,頂點C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…則正方形A2017B2017C2017D2017的邊長是( 。
A. ()2016 B. ()2017 C. ()2016 D. ()2017
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在ABCD中, 對角線AC、BD相交于點O. E、F是對角線AC上的兩個不同點,當E、F兩點滿足下列條件時,四邊形DEBF不一定是平行四邊形( ).
A.AE=CFB.DE=BFC.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BCD=∠D=90°,E是邊AB的中點.已知AD=1,AB=2.
(1)設BC=x,CD=y,求y關于x的函數(shù)關系式,并寫出定義域;
(2)當∠B=70°時,求∠AEC的度數(shù);
(3)當△ACE為直角三角形時,求邊BC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】在梯形ABCD中,AD∥BC,AB=CD=AD=5cm,BC=11cm,點P從點D開始沿DA邊以每秒1cm的速度移動,點Q從點B開始沿BC邊以每秒2cm的速度移動(當點P到達點A時,點P與點Q同時停止移動),假設點P移動的時間為x(秒),四邊形ABQP的面積為y(cm2).
(1)求y關于x函數(shù)解析式,并寫出它的定義域;
(2)在移動的過程中,PQ是否可能平分對角線AC?若能,求出x的值;若不能,請說明理由;
(3)在移動的過程中,是否從在x使得PQ=AB,若存在求出所有x的值,若不存在請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】佳樂家超市元旦期間搞促銷活動,活動方案如下表:
一次性購物 | 優(yōu)惠方案 |
不超過200元 | 不給予優(yōu)惠 |
超過200元,而不超過1000元 | 優(yōu)惠10% |
超過1000元 | 其中1000元按8.5折優(yōu)惠,超過部分按7折優(yōu)惠 |
小穎在促銷活動期間兩次購物分別支付了134元和913元.
(1)小穎兩次購買的物品如果不打折,應支付多少錢?
(2)在此活動中,他節(jié)省了多少錢?
查看答案和解析>>
科目: 來源: 題型:
【題目】根據(jù)第五次、第六次全國人口普查結果顯示:某市常住人口總數(shù)由第五次的400萬人增加到第六次的450萬人,常住人口的學歷狀況統(tǒng)計圖如圖所示(部分信息未給出):
解答下列問題:
(1)求第六次人口普查小學學歷的人數(shù),并把條形統(tǒng)計圖補充完整;
(2)求第五次人口普查中該市常住人口每萬人中具有初中學歷的人數(shù);
(3)第六次人口普查結果與第五次相比,每萬人中初中學歷的人數(shù)增加了多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平面直角坐標系中,點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,OC=OE=4,B為線段OA的中點,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M,點P為線段FG上一個動點(與F、G不重合),PQ∥y軸與拋物線交于點Q.
(1)求經(jīng)過B、E、C三點的拋物線的解析式;
(2)判斷△BDC的形狀,并給出證明;當P在什么位置時,以P、O、C為頂點的三角形是等腰三角形,并求出此時點P的坐標;
(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】將圖1,將一張直角三角形紙片ABC折疊,使點A與點C重合,這時DE為折痕,△CBE為等腰三角形;再繼續(xù)將紙片沿△CBE的對稱軸EF折疊,這時得到了兩個完全重合的矩形(其中一個是原直角三角形的內接矩形,另一個是拼合成的無縫隙、無重疊的矩形),我們稱這樣兩個矩形為“疊加矩形”.
(1)如圖2,正方形網(wǎng)格中的△ABC能折疊成“疊加矩形”嗎?如果能,請在圖2中畫出折痕;
(2)如圖3,在正方形網(wǎng)格中,以給定的BC為一邊,畫出一個斜三角形ABC,使其頂點A在格點上,且△ABC折成的“疊加矩形”為正方形;
(3)如果一個三角形所折成的“疊加矩形”為正方形,那么它必須滿足的條件是 ;
(4)如果一個四邊形一定能折成“疊加矩形”,那么它必須滿足的條件是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】某小學開展4種課外興趣小組活動,分別為A;繪畫:B;機器人:C;跳舞:D;吉他.每個學生都要選取一個興趣小組參與活動,小明對同學們選取的活動形式進行了隨機抽樣調查,根據(jù)調查統(tǒng)計結果,繪制了如下的統(tǒng)計圖:
(1)本次調查學生共 人,a= ,并將條形圖補充完整;
(2)如果該校有學生500人,則選擇“機器人”活動的學生估計有多少人?
(3)學校讓每班同學在A,B,C,D四種活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表法的方法,求每班抽取的兩種形式恰好是“繪畫”和“機器人”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com