相關習題
 0  356383  356391  356397  356401  356407  356409  356413  356419  356421  356427  356433  356437  356439  356443  356449  356451  356457  356461  356463  356467  356469  356473  356475  356477  356478  356479  356481  356482  356483  356485  356487  356491  356493  356497  356499  356503  356509  356511  356517  356521  356523  356527  356533  356539  356541  356547  356551  356553  356559  356563  356569  356577  366461 

科目: 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).

(1)將ABC向下平移5個單位后得到A1B1C1,請畫出A1B1C1;

(2)將ABC繞原點O逆時針旋轉(zhuǎn)90°后得到A2B2C2,請畫出A2B2C2

(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,矩形ABCD的頂點A,Bx軸上,且關于y軸對稱,反比例函數(shù)y=(x>0)的圖象經(jīng)過點C,反比例函數(shù)y=(x<0)的圖象分別與AD,CD交于點E,F(xiàn),若SBEF=7,k1+3k2=0,則k1等于_____

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,矩形紙片ABCD,AB=4,BC=3,點PBC邊上,將CDP沿DP折疊,點C落在點E處,PE、DE分別交AB于點O、F,且OP=OF,則cosADF的值為(  )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】某服裝廠生產(chǎn)一種西裝和領帶,西裝每套定價元,領帶每條定價元,廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:

買一套西裝送一條領帶;

西裝和領帶都按定價的付款.

現(xiàn)某客戶要到該服裝廠購買西裝套,領帶條().

(1)客戶分別按方案、方案購買,各需付款多少元?(用含的代數(shù)式表示);

(2)若,通過計算說明此時按哪種方案購買較為合算?

查看答案和解析>>

科目: 來源: 題型:

【題目】一個自然數(shù)的立方,可以分裂成若干個連續(xù)奇數(shù)的和。例如:分別可以按如圖所示的方式分裂2個、3個和4個連續(xù)奇數(shù)的和,即=3+5;=7+9+11; =13+15+17+19;…;若也按照此規(guī)律來進行分裂,則分裂出的奇數(shù)中,最大的奇數(shù)是______.

查看答案和解析>>

科目: 來源: 題型:

【題目】閱讀下面的情境對話,然后解答問題

1)根據(jù)奇異三角形的定義,請你判斷小華提出的命題:等邊三角形一定是奇異三角形是真命題還是假命題?

2)在RtABC 中, ACB90°,ABcACb,BCa,且ba,若RtABC是奇異三角形,求abc;

3)如圖,ABO的直徑,C是上一點(不與點A、B重合),D是半圓的中點,CD在直徑AB的兩側,若在O內(nèi)存在點E使得AEAD,CBCE

求證:ACE是奇異三角形;

ACE是直角三角形時,求AOC的度數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,△ABC中,DBC的中點,過D點的直線GFACF,交AC的平行線BGG點,DE⊥DF,交AB于點E,連結EG、EF

1)求證:BGCF

2)請你判斷BE+CFEF的大小關系,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在正方形ABCD中,EAD上一點,FBA延長線上的一點,AF=AE,.

1)求證:ABE≌△ADF

2)線段BEDF有什么關系?證明你的結論.

查看答案和解析>>

科目: 來源: 題型:

【題目】數(shù)軸上點表示的數(shù)是點表示的數(shù)是,則線段的長表示為.例如:數(shù)軸上點表示的數(shù)是5點表示的數(shù)是2,則線段的長表示為

1)點表示的數(shù)是3,線段的長可表示為______

2)若,______

3)數(shù)軸上的任意一點表示的數(shù)是,且的最小值為5,若,則的值為______

4)如圖,在數(shù)軸上點在點的右邊,,若代數(shù)式互為相反數(shù),求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】2017浙江省溫州市)小黃準備給長8m,寬6m的長方形客廳鋪設瓷磚,現(xiàn)將其劃分成一個長方形ABCD區(qū)域Ⅰ(陰影部分)和一個環(huán)形區(qū)域Ⅱ(空白部分),其中區(qū)域Ⅰ用甲、乙、丙三種瓷磚鋪設,且滿足PQAD,如圖所示.

1)若區(qū)域Ⅰ的三種瓷磚均價為300元/m2,面積為Sm2),區(qū)域Ⅱ的瓷磚均價為200元/m2,且兩區(qū)域的瓷磚總價為不超過12000元,求S的最大值;

2)若區(qū)域Ⅰ滿足BC=23,區(qū)域Ⅱ四周寬度相等.

①求AB,BC的長;

②若甲、丙兩瓷磚單價之和為300元/m2,乙、丙瓷磚單價之比為53,且區(qū)域Ⅰ的三種瓷磚總價為4800元,求丙瓷磚單價的取值范圍.

查看答案和解析>>

同步練習冊答案