科目: 來源: 題型:
【題目】隨著“三農”問題的解決,某農民近兩年的年收入發(fā)生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據(jù)①②③三種農作物每種作物每年的收入占該年年收入的比例繪制的扇形統(tǒng)計圖.依據(jù)統(tǒng)計圖得出的以下四個結論正確的是( )
A. ①的收入去年和前年相同
B. ③的收入所占比例前年的比去年的大
C. 去年②的收入為2.8萬
D. 前年年收入不止①②③三種農作物的收入
查看答案和解析>>
科目: 來源: 題型:
【題目】列方程解應用題:某社區(qū)超市第一次用6000元購進甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進價和售價如下表:(注:獲利=售價-進價)
(1)該超市將第一次購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?
(2)該超市第二次以第一次的進價又購進甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得的總利潤比第一次獲得的總利潤多180元,求第二次乙種商品是按原價打幾折銷售?
查看答案和解析>>
科目: 來源: 題型:
【題目】在如圖所示的網(wǎng)格中有四條線段AB、CD、EF、GH(線段端點在格點上),
⑴選取其中三條線段,使得這三條線段能圍成一個直角三角形.
答:選取的三條線段為 .
⑵只變動其中兩條線段的位置,在原圖中畫出一個滿足上題的直角三角形(頂點仍在格點,并標上必要的字母).
答:畫出的直角三角形為△ .
⑶所畫直角三角形的面積為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC邊上的中點,連結AD,BE平分∠ABC交AC于點E,過點E作EF∥BC交AB于點F.
(1)若∠C=36°,求∠BAD的度數(shù);
(2)求證:FB=FE.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀:已知點A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點之間的距離表示為|AB|=|a﹣b|.
理解:
(1)數(shù)軸上表示2和﹣3的兩點之間的距離是 ;
(2)數(shù)軸上表示x和﹣5的兩點A和B之間的距離是 ;
(3)當代數(shù)式|x﹣1|+|x+3|取最小值時,相應的x的取值范圍是 ;最小值是 .
應用:某環(huán)形道路上順次排列有四家快遞公司:A、B、C、D,它們順次有快遞車16輛,8輛,4輛,12輛,為使各快遞公司的車輛數(shù)相同,允許一些快遞公司向相鄰公司調出,問共有多少種調配方案,使調動的車輛數(shù)最少?并求出調出的最少車輛.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學習小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計圖,則符合這一結果的實驗最有可能的是( 。
A. 袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球
B. 擲一枚質地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)
C. 先后兩次擲一枚質地均勻的硬幣,兩次都出現(xiàn)反面
D. 先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過9
查看答案和解析>>
科目: 來源: 題型:
【題目】一輛貨車從貨場出發(fā),向東走2千米到達批發(fā)部,繼續(xù)向東走1.5千米到達商場,又向西走5.5千米到達超市,最后回到貨場.
(1)以貨場為原點,以東為正方向,用一個單位長度表示1千米,你能在數(shù)軸上分別表示出貨場,批發(fā)部,商場,超市的位置嗎?
(2)超市距離貨場多遠?
(3)此貨車每千米耗油0.1升,每升汽油6.20元,請計算此貨車一共需要多少汽油費?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知∠AOB=60°,OC是∠AOB的平分線,點D為OC上一點,過D作直線DE⊥OA,垂足為點E,且直線DE交OB于點F,如圖所示.若DE=2,則DF=_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】有20筐白菜,以每筐25千克為標準,超過或不足千克數(shù)分別用正,負數(shù)表示,記錄如下:
與標準質量的差值(單位:千克) | 0 | 1 | 2.5 | |||
筐數(shù) | 1 | 4 | 2 | 3 | 2 | 8 |
(1)20筐白菜中,最重的一筐比最輕的一筐多重多少千克?
(2)與標準質量比較,20筐白菜總計超過或不足多少千克?
(3)若白菜每千克售價2.8元,則出售這20筐白菜可賣多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+2x經(jīng)過原點O,且與直線y=x﹣2交于B,C兩點.
(1)求拋物線的頂點A的坐標及點B,C的坐標;
(2)求證:∠ABC=90°;
(3)在直線BC上方的拋物線上是否存在點P,使△PBC的面積最大?若存在,請求出點P的坐標;若不存在,請說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com