科目: 來源: 題型:
【題目】如圖1,在長方形中,BC=3,動點從出發(fā),以每秒1個單位的速度,沿射線方向移動,作關于直線的對稱,設點的運動時間為
(1)當P點在線段BC上且不與C點重合時,若直線PB’與直線CD相交于點M,且∠PAM=45°,試求:AB的長
(2)若AB=4
①如圖2,當點B’落在AC上時,顯然△PCB’是直角三角形,求此時t的值
②是否存在異于圖2的時刻,使得△PCB’是直角三角形?若存在,請直接寫出所有符合題意的t的值?若不存在,請說明理由
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,取斜邊AB的中點E,易得△BCE是等邊三角形,從而得到“直角三角形中,30°角所對的直角邊等于斜邊的一半”利用這個結論解決問題:
如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,若動點P從點A出發(fā),沿AB以每秒2個單位長度的速度向終點B運動.過點P作PD⊥AC于點D(點P不與點A.B重合),作∠DPQ=60°,邊PQ交射線DC于點Q.設點P的運動時間為t秒.
(1)用含t的代數(shù)式表示線段DC的長;
(2)當線段PQ的垂直平分線經(jīng)過△ABC一邊中點時,直接寫出t的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點P為AC邊上的一點,將線段AP繞點A順時針方向旋轉(點P對應點P′),當AP旋轉至AP′⊥AB時,點B、P、P′恰好在同一直線上,此時作P′E⊥AC于點E.
(1)求證:∠CBP=∠ABP;
(2)求證:AE=CP;
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,居民樓與馬路是平行的,在一樓的點A處測得它到馬路的距離為9m,已知在距離載重汽車41m處就可受到噪聲影響.
(1)試求在馬路上以4m/s速度行駛的載重汽車,能給一樓A處的居民帶來多長時間的噪音影響?
(2)若時間超過25秒,則此路禁止該車通行,你認為載重汽車可以在這條路上通行嗎?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C分別在x軸和y軸上,點B的坐標為(2,3)。雙曲線的圖像經(jīng)過BC的中點D,且與AB交于點E,連接DE。
(1)求k的值及點E的坐標;
(2)若點F是邊上一點,且△FBC∽△DEB,求直線FB的解析式
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)如圖,己知△ABC中,AC>AB.試用直尺(不帶刻度)和圓規(guī)在圖中過點A作一條直線l,使點B關于直線l的對稱點在邊AC上(不要求寫作法,也不必說明理由,但要保留作圖痕跡);
(2).如圖,方格紙中每個小正方形的邊長均為1,線段AB和PQ的端點均在小正方形的頂點上.
①在線段PQ上確定一點C(點C在小正方形的頂點上).使△ABC是軸對稱圖形,并在網(wǎng)格中畫出△ABC;
②請直接寫出△ABC的周長和面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知函數(shù)y=x與反比例函數(shù)y= (x>0)的圖象交于點A.將y=x的圖象向下移6個單位后與雙曲線y=交于點B,與x軸交于點C.
(1)求點C的坐標;
(2)若=2,求反比例函數(shù)的表達式.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖在三角形紙片ABC中,已知∠ABC=90,AC=5,BC=4,過點A作直線l平行于BC,折疊三角形紙片ABC,使直角頂點B落在直線l上的點P處,折痕為MN,當點P在直線l上移動時,折痕的端點M、N也隨之移動,若限定端點M、N分別在AB、BC邊上(包括端點)移動,則線段AP長度的最大值與最小值的差為________________.
查看答案和解析>>
科目: 來源: 題型:
【題目】某汽車的功率P為一定值,汽車行駛時的速度v(m/s)與它所受的牽引力F(N)之間的函數(shù)關系式如圖所示.
(1)這輛汽車的功率是多少?請寫出這一函數(shù)的表達式;
(2)當它所受的牽引力為1200 N時,汽車的速度為多少千米/時?
(3)如果限定汽車的速度不超過30 m/s,則F在什么范圍內?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,雙曲線和直線y=kx+b交于A,B兩點,點A的坐標為(﹣3,2),BC⊥y軸于點C,且OC=6BC.
(1)求雙曲線和直線的解析式;
(2)直接寫出不等式的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com