科目: 來源: 題型:
【題目】觀察下列方程的特征及其解的特點.
①x+=-3的解為x1=-1,x2=-2;
②x+=-5的解為x1=-2,x2=-3;
③x+=-7的解為x1=-3,x2=-4.
解答下列問題:
(1)請你寫出一個符合上述特征的方程為________,其解為________;
(2)根據(jù)這類方程的特征,寫出第n個方程為________,其解為________;
(3)請利用(2)的結論,求關于x的方程x+=-2(n+2)(其中n為正整數(shù))的解.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)補充完整:
如圖1,在正方形ABCD中,E、F分別為DC、BC邊上的點,且滿足∠EAF=45°,連結EF,試說明DE+BF=EF.
解:將△ADE繞點A順時針旋轉90°得到△ABG,此時AB與AD重合.由旋轉可得AB=AD,GB=ED,∠1=∠2,∠ABG=∠D=90°.
∴∠ABG+∠ABF=90°+90°=180°.
∴點G、B、F在同一條直線上.
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°
∵∠1=∠2,
∴∠1+∠3=45°.
∴∠GAF=∠ .
又∵AG=AE,AF=AF.
∴△GAF≌ .
∵ =EF.
∴DE+BF=BG+BF=GF=EF.
(2)類比引申:
如圖2,在四邊形ABCD中,AB=AD,∠BAD=90°,點E、F分別在邊BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,則當∠B與∠D滿足等量關系 時,有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°,試猜想BD、DE、EC滿足的等量關系,并寫出推理過程.
查看答案和解析>>
科目: 來源: 題型:
【題目】2016年是中國工農(nóng)紅軍長征勝利80周年,某商家用1200元購進了一批長征勝利主題紀念衫,上市后果然供不應求,商家又用2800元購進了第二批這種紀念衫,所購數(shù)量是第一批購進量的2倍,但單價貴了5元.
(1)該商家購進的第一批紀念衫單價是多少元?
(2)若兩批紀念衫按相同的標價銷售,最后剩下20件按標價八折優(yōu)惠賣出,如果兩批紀念衫全部售完利潤不低于640元(不考慮其它因素),那么每件紀念衫的標價至少是多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.
(1)用含x的代數(shù)式表示線段CF的長;
(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設=y,求y關于x的函數(shù)關系式,并寫出它的定義域;
(3)當∠ABE的正切值是時,求AB的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解學生參加戶外活動的情況,和諧中學對學生每天參加戶外活動的時間進行抽樣調(diào)查,并將調(diào)查結果繪制成如圖兩幅不完整的統(tǒng)計圖,根據(jù)圖示,請回答下列問題:
(1)被抽樣調(diào)查的學生有______人,并補全條形統(tǒng)計圖;
(2)每天戶外活動時間的中位數(shù)是______(小時);
(3)該校共有2000名學生,請估計該校每天戶外活動時間超過1小時的學生有多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點P是等邊三角形ABC內(nèi)一點,且PA=3,PB=4, PC=5,若將△APB繞著點B逆時針旋轉后得到△CQB,則∠APB的度數(shù)______.
查看答案和解析>>
科目: 來源: 題型:
【題目】在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉60°,得到△BAE,連接ED,若BC=5,BD=4,則以下四個結論中: ①△BDE是等邊三角形; ②AE∥BC; ③△ADE的周長是9; ④∠ADE=∠BDC.其中正確的序號是( 。
A.②③④B.①②④C.①②③D.①③④
查看答案和解析>>
科目: 來源: 題型:
【題目】一位運動員在距籃下4m處跳起投籃,球運行的路線是拋物線,當球運行的水平距離是2.5m時,達到最大高度3.5m,然后準確落入籃圈.已知籃圈中心到地面的距離為3.05m.
(1)建立如圖所示的平面直角坐標系,求拋物線的解析式.
(2)該運動員身高1.8m,在這次跳投中,球在頭頂上0.25m處出手,
問:球出手時,他距離地面的高度是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,邊長相等的兩個正方形ABCD和OEFG,若將正方形OEFG繞點O按逆時針方向旋轉150°,兩個正方形的重疊部分四邊形OMCN的面積( )
A. 不變 B. 先增大再減小 C. 先減小再增大 D. 不斷增大
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,點E在BC上,以CE為直徑的⊙O交AB于點F,AO∥EF
(1)求證:AB是⊙O的切線;
(2)如圖2,連結CF交AO于點G,交AE于點P,若BE=2,BF=4,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com