相關習題
 0  357097  357105  357111  357115  357121  357123  357127  357133  357135  357141  357147  357151  357153  357157  357163  357165  357171  357175  357177  357181  357183  357187  357189  357191  357192  357193  357195  357196  357197  357199  357201  357205  357207  357211  357213  357217  357223  357225  357231  357235  357237  357241  357247  357253  357255  357261  357265  357267  357273  357277  357283  357291  366461 

科目: 來源: 題型:

【題目】如圖,點C為線段AB上一點,ACM,CBN是等邊三角形,直線AN,MC交于點E,直線BM、CN交與F點。

(1)求證:AN=BM;

(2)求證:CEF為等邊三角形;

(3)ACM繞點C按逆時針方向旋轉900,其他條件不變,在圖2中補出符合要求的圖形,并判斷第(1)(2)兩小題的結論是否仍然成立,不要求證明。

查看答案和解析>>

科目: 來源: 題型:

【題目】(8分)如圖,在△ABC中,ADBCD,AE平分∠DAC,BAC=80°,B=60°,求∠AEC的度數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在ABCDCB中,若∠ACB=∠DBC,則不能證明兩個三角形全等的條件是( )

A.ABC=∠DCBB.A=∠DC.AB=DCD.AC=DB

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦DCABE,過C作⊙O的切線交DB的延長線于M,若AB=4,ADC=45°,M=75°,則CD的長為( 。

A. B. 2 C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在ABC中,∠A∶∠B∶∠C=3510,又MNC≌△ABC,則∠BCM∶∠BCN等于(

A. 12 B. 13 C. 23 D. 14

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,在平面直角坐標系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點AABx軸,垂足為點A,過點CCBy軸,垂足為點C,兩條垂線相交于點B.

(1)線段AB,BC,AC的長分別為AB=   ,BC=   ,AC=   

(2)折疊圖1中的ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DEAB于點D,交AC于點E,連接CD,如圖2.

請從下列A、B兩題中任選一題作答,我選擇   題.

A:①求線段AD的長;

②在y軸上,是否存在點P,使得APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標;若不存在,請說明理由.

B:①求線段DE的長;

②在坐標平面內,是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點PBA的延長線上,弦CDAB于點E,OE:EA=1:2,PA=6,POC=PCE.

(1)求證:PC是⊙O的切線;

(2)求⊙O的半徑;

(3)求sinPCA的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】有一個二次函數(shù)滿足以下條件:

①函數(shù)圖象與x軸的交點坐標分別為A(1,0),B(x2,y2)(點B在點A的右側);

②對稱軸是x=3;

③該函數(shù)有最小值是﹣2.

(1)請根據(jù)以上信息求出二次函數(shù)表達式;

(2)將該函數(shù)圖象xx2的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點C(x3,y3)、D(x4,y4)、E(x5,y5)(x3x4x5),結合畫出的函數(shù)圖象求x3+x4+x5的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,ABC中,∠ACB=90°,AB=10cm,BC=6cm,若點P從點A出發(fā),以每秒4cm的速度沿折線ACBA運動,設運動時間為t秒(t0).

1)若點PAC上,且滿足BCP的周長為14cm,求此時t的值;

2)若點P在∠BAC的平分線上,求此時t的值;

3)在運動過程中,直接寫出當t為何值時,BCP為等腰三角形.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.

(1)求證:AF=DC;

(2)若ABAC,試判斷四邊形ADCF的形狀,并證明你的結論.

查看答案和解析>>

同步練習冊答案