科目: 來源: 題型:
【題目】如圖1,拋物線與x軸交于點,,與y軸交于點C,頂點為D,直線AD交y軸于點E.
(1)求拋物線的解析式.
(2)如圖2,將沿直線AD平移得到.
①當點M落在拋物線上時,求點M的坐標.
②在移動過程中,存在點M使為直角三角形,請直接寫出所有符合條件的點M的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,中,,DE垂直平分AB,交線段BC于點E(點E與點C不重合),點F為AC上一點,點G為AB上一點(點G與點A不重合),且.
(1)如圖1,當時,線段AG和CF的數(shù)量關系是 .
(2)如圖2,當時,猜想線段AG和CF的數(shù)量關系,并加以證明.
(3)若,,,請直接寫出CF的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】小李在景區(qū)銷售一種旅游紀念品,已知每件進價為6元,當銷售單價定為8元時,每天可以銷售200件.市場調(diào)查反映:銷售單價每提高1元,日銷量將會減少10件,物價部門規(guī)定:銷售單價不能超過12元,設該紀念品的銷售單價為x(元),日銷量為y(件),日銷售利潤為w(元).
(1)求y與x的函數(shù)關系式.
(2)要使日銷售利潤為720元,銷售單價應定為多少元?
(3)求日銷售利潤w(元)與銷售單價x(元)的函數(shù)關系式,當x為何值時,日銷售利潤最大,并求出最大利潤.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,聰聰想在自己家的窗口A處測量對面建筑物CD的高度,他首先量出窗口A到地面的距離(AB)為16m,又測得從A處看建筑物底部C的俯角α為30°,看建筑物頂部D的仰角β為53°,且AB,CD都與地面垂直,點A,B,C,D在同一平面內(nèi).
(1)求AB與CD之間的距離(結果保留根號).
(2)求建筑物CD的高度(結果精確到1m).(參考數(shù)據(jù):,,,)
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市用1200元購進一批甲玩具,用800元購進一批乙玩具,所購甲玩具件數(shù)是乙玩具件數(shù)的,已知甲玩具的進貨單價比乙玩具的進貨單價多1元.
(1)求:甲、乙玩具的進貨單價各是多少元?
(2)玩具售完后,超市決定再次購進甲、乙玩具(甲、乙玩具的進貨單價不變),購進乙玩具的件數(shù)比甲玩具件數(shù)的2倍多60件,求:該超市用不超過2100元最多可以采購甲玩具多少件?
查看答案和解析>>
科目: 來源: 題型:
【題目】書法是我國的文化瑰寶,研習書法能培養(yǎng)高雅的品格.某校為加強書法教學,了解學生現(xiàn)有的書寫能力,隨機抽取了部分學生進行測試,測試結果分為優(yōu)秀、良好、及格、不及格四個等級,分別用A,B,C,D表示,并將測試結果繪制成如圖兩幅不完整的統(tǒng)計圖.
請根據(jù)統(tǒng)計圖中的信息解答以下問題:
(1)本次抽取的學生人數(shù)是 ,扇形統(tǒng)計圖中A所對應扇形圓心角的度數(shù)是 .
(2)把條形統(tǒng)計圖補充完整.
(3)若該學校共有2800人,等級達到優(yōu)秀的人數(shù)大約有多少?
(4)A等級的4名學生中有3名女生1名男生,現(xiàn)在需要從這4人中隨機抽取2人參加電視臺舉辦的“中學生書法比賽”,請用列表或畫樹狀圖的方法,求被抽取的2人恰好是1名男生1名女生的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,A、B、C、D為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止,點Q以2cm/s的速度向D移動.
(1)P、Q兩點從出發(fā)開始到幾秒時,四邊形APQD為長方形?
(2)P、Q兩點從出發(fā)開始到幾秒時?四邊形PBCQ的面積為33cm2;
(3)P、Q兩點從出發(fā)開始到幾秒時?點P和點Q的距離是10cm.
查看答案和解析>>
科目: 來源: 題型:
【題目】工廠對某種新型材料進行加工,首先要將其加溫,使這種材料保持在一定溫度范圍內(nèi)方可加工,如圖是在這種材料的加工過程中,該材料的溫度y(℃)時間x(min)變化的數(shù)圖象,已知該材料,初始溫度為15℃,在溫度上升階段,y與x成一次函數(shù)關系,在第5分鐘溫度達到60℃后停止加溫,在溫度下降階段,y與x成反比例關系.
(1)寫出該材料溫度上升和下降階段,y與x的函數(shù)關系式:
①上升階段:當0≤x≤5時,y= ;
②下降階段:當x>5時,y .
(2)根據(jù)工藝要求,當材料的溫度不低于30℃,可以進行產(chǎn)品加工,請問在圖中所示的溫度變化過程中,可以進行加工多長時間?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線y=k1x+b與雙曲線相交于A(1,2),B(m,-1)兩點.
(1)求直線和雙曲線的表達式;
(2)求直線AB與x軸的交點C的坐標及ΔAOB的面積;
(3)觀察圖像,請直接寫出使不等式k1x+b>成立的x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知關于x的方程x2+(2k-1)x+k2-1=0有兩個實數(shù)根x1,x2.
(1)求實數(shù)k的取值范圍;
(2)若x1,x2滿足x12+x22=16+x1x2,求實數(shù)k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com